Содержание

ВВЕДЕНИЕ

ГЛАВА 1.ОБЗОР ЛИТЕРАТУРЫ

1.1 Кальпаин/кальпастатиновая протеoлитическая система

1.2 Биохимические механизмы развития нейродегенеративных заболеваний

ГЛАВА 2.МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1 Реагенты и приборы

2.2 Моделирование нейродегенерации у лабораторных животных

2.3 Анализ биохимических показателей

2.3.1 Экстракция белков из тканей

2.3.2 Определение активности кальпаинов

2.3.3 Зимография с казеином

2.3.4 Электрофорез белков полиакриламидном геле

2.3.5 Вестерн-блот анализ

2.3.6 Другие методы

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

3.1 Кальпаин/кальпастатиновая система у крыс, подвергнутых индуцированной бета-амилоидом нейродегенирации на фоне эстрогенной терапии

3.2 Кальпаин/кальпастатиновая система у крыс, подвергнутых глутамат-индуцированной нейродегенирации на фоне терапии потенциальными нейропротекторами

ВЫВОДЫ

ЗАКЛЮЧЕНИЯ

СПИСОК ЛИТЕРАТУРЫ

Выдержка из текста

Нейродегенеративные заболевания ‒ болезни Альцгеймера, Паркинсона и другие – представляют в странах с высокой продолжительностью жизни населения огромную медицинскую, социальную, финансовую и научную проблему. Распространенность этих заболеваний растёт по мере старения населения, и большинство развитых стран уже сейчас оказывают специальную поддержку исследованиям в области изучения нейродегенеративных заболеваний.

К настоящему времени участие внутриклеточных протеиназ в нейродегенеративных процессах не вызывает сомнений. С одной стороны, недостаточная интенсивность протеиназозависимых процессов при нейродегенеративных заболеваниях способствует накоплению большого количества патологических белков, например, бета-амилоида и тау-протеина при болезни Альцгеймера, альфа-синуклеина при болезни Паркинсона и других. С другой стороны, протеиназы регулируют основные пути гибели клеток при нейродегенерации – апоптоз, некроз и аутофагию. Таким образом, для нервной ткани жизненно важно поддержание тонкого баланса активности протеиназ, при этом может быть необходимым как повышение их активности для разрушения патогенных белков, так и снижение – для предотвращения массовой гибели нейронов. Са2+-зависимые протеиназы, или кальпаины, относящиеся к семейству С2 цистеинового типа, представлены в тканях ЦНС пятью ферментами – основными μ- и m-кальпаинами (КФ 3.4.22.52 и 3.4.22.53, соответственно) и минорными кальпаинами 3, 5 и 10. Участие Са2+-зависимых протеаз в нейродегенеративных процессах – общебиологическое явление, обнаруживаемое у широкого круга организмов – от нематоды С. elegans до приматов.

В силу особенностей биологии (неспособность к митозу) нейроны особенно чувствительны к накоплению недеградированных продуктов белкового обмена, в норме эффективно разрушаемых внутриклеточными протеиназами. Известно, что в нормальных условиях более 25% синтезированных de novo клеточных белков содержат ошибки и подвергаются быстрому разрушению. Ослабление протеиназоассоциированной функции контроля качества клеточных белков (в силу нарушения синтеза и/или регуляции протеиназ из-за сенильных изменений или при действии неблагоприятных экзогенных или эндогенных факторов) приводит к накоплению клеточных белков с ошибками биосинтеза и с нарушенной конформацией. Дефектные белки нефункциональны, участвуют в аберрантных взаимодействиях, образуют нерастворимые белковые агрегаты и приобретают свойства цитотоксичности. В связи с этим, проект направлен на изучение роли внутриклеточных протеиназ в механизмах возрастной и патологической нейродегенерации.

Целью экспериментальной и теоретической работы было изучение роли внутриклеточных кальцийзависимых протеиназ (кальпаинов) в развитии индуцированных нейродегенеративных нарушений и механизмов торможения кальпаинозависимых этапов нейродегенерации путём введения нейропротекторов. Объект исследования — лабораторные крысы- биомодели нейродегенеративных патологий человека. Для достижения поставленной цели было необходимо решить следующие задачи:

1) анализ литературных источников по проблеме разнообразия молекулярных форм кальпаинов в тканях млекопитающих, их эндогенных регуляторов и роли кальпаиновой системы в развитии нейродегенеративных процессов;

2) освоение методических приёмов выделения кальцийзависимых протеиназ из тканей животных, разделения их молекулярных форм, определения протеолитической активности, количественной оценки уровня ингибитора кальпастатина;

3) проведение экспериментов с лабораторными животными: индуцирование нейродегенерации путём введения экзогенных веществ, её коррекция потенциальными нейропротекторами, проведение поведенческих тестов, взятие биологического материала (органов крыс) для биохимического анализа;

4) биохимический анализ протеолитической активности разных молекулярных форм кальпаинов и количественная оценка их ингибитора — кальпастатина в нервной ткани крыс разных экспериментальных групп;

5) анализ результатов об участии кальпаинов и их регуляторов в развитии индуцированной нейропатологии и возможности купирования кальпаинозависимых нарушений потенциальными нейропротекторами.

Список использованной литературы

1) Бондарева Л.А., Немова Н.Н., Кяйвяряйнен Е.И. Внутриклеточная Са2+-зависимая протеолитическая система животных. М.: Наука, 2006. 304 с.

2) Немова Н.Н., Лысенко Л.А., Канцерова Н.П., Протеазы семейства кальпаинов. Структура и функции. Отногенез. 2010. Т. 41. (5): 381-389.

3) Nixon R.A. // Ageing Res. Rev. 2003. V. 2. P. 407–418.

4) Siman R., Noszek J.C. // Neuron. 1988. V. 1. P. 279-287.

5) Carragher N.O., Walker S.M., Scott Carragher L.A., Harris F., Sawyer T.K., Brunton V.G., Ozanne B.W., Frame M.C. // Oncogene. 2006. V. 25. P. 5726–5740.

6) Chakraborti S., Alam M.N., Paik D., Shaikh S., Chakraborti T. // Indian J. Biochem. Biophys. 2012. V. 49(5). P. 316-328.

7) Moldoveanu T., Gehring K., Green D.R. // Nature. 2008. V. 456. P. 404-408.

8) Averna M., De Tullio R., Capini P., Salamino F., Pontremoli S., Melloni E. // Cell. Mol. Life Sci. 2003. V. 60. P. 2669–2678.

9) Hanna R.A., Campbell R.L., Davies P.L. // Nature. 2008. V. 456. P. 409-413.

10) Berridge M.J., Bootman M.D., Roderick H.L. // Nat. Rev. Mol. Cell. Biol. 2003. V. 4(7). P. 517-529.

11) Bevers M.B., Neumar R.W. // J. Cereb. Blood Flow Metab. 2008. V. 28(4). P. 655-673.

12) Алтаева Э.Г., Лысенко Л.А., Канцерова Н.П., Немова Н.Н., Шенкман Б.С. // Докл. АН. 2010. Т. 433. № 1. С. 138-141.

13) Atherton J., Kurbatskaya K., Bondulich M., Croft C.L., Garwood C.J., Chhabra R., Wray S., Jeromin A., Hanger D.P., Noble W. // Aging Cell. 2014. V. 13. P. 49–59.

14) Abele K., Yang J. // Acta Physiologica Sinica. 2012. V. 64(5). P. 504–514.

15) Carrell R.W., Lomas D.A. Conformation disease// Lancet. 1997. V. 350. P. 134-138.

16) Hardy J. // J. Neurochem. 2009. V. 110. P. 1129-1134.

17) Grundke-Iqbal I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I. // Proc. Natl Acad. Sci. USA. 1986. V. 83. P. 4913-4917.

18) La Ferla F. // Nat. Rev. Neurosci. 2002. V. 3. P. 862-872

19) Tydlacka S., Wang C.E., Wang X., Li S., Li X.J. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons // J. Neurosci. 2008. V. 28. P. 13285-13295.

20) Danysz W., Parsons C.G. // Brit. J. Pharmacol. 2012. V. 167. P. 324–352.

21) Berry J.N., Sharrett-Field L., Butler T.R., Prendergast M.A. // Neurosci. 2012. V. 222. P. 147–158.

22) Vaisid T., Kosower N.S., Elkind E., Barnoy S. // J. Neurosci. Res. 2008. V. 86. P. 2314-2325.

23) Vosler P.S., Brennan C.S., Chen J. // Mol. Neurobiol. 2008. V. 38. P. 78-100.

24) Bezprozvanny I. Calcium signaling and neurodegenerative diseases // Trends Mol. Med. 2009. V. 15. P. 89-100.

25) Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248-254.

26) Enns D.L., Belcastro A.N. Early activation and redistribution of calpain activity in skeletal muscle during hindlimb unweighting and reweighting // Can. J. Physiol. Pharmacol. 2006. V. 84. P. 601-609.

27) Figueiredo-Petera M.E., Efthimiopoulos S., Tezapsidis N. Distinct secretases, a cysteine protease and serine protease, generate the C-termini of amyloid β-proteinase Aβ 1-40 and Aβ 1-42, respectively // J. Neurochem. 1999. Vol. 72. P. 1417-1422.

28) Goll D.E., Thompson V.F., Li H., Wei W., Cong J. Calpain system // Physiol. Rev. 2003. Vol. 83,N 3. P. 731-801

29) Grynspan F., Griffin W.R., Catalado A. Active site-directed antibodies identify calpain II as early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease // Brain Res. 1997. Vol. 763. P. 145-158.

30) Guttmann R.P., Johnson G.V.W. Calpain-mediated proteolysis of neuronal structural proteins // Calpain–Pharmacology and Toxicology of Calcium-dependent Protease, Taylor & Francis, Philadelphia, PA. – 1999. – С. 229-249.

31) Han P., Dou F. et al. Suppression of cyclin-dependent kinase 5 activation by amyloid precursor protein: a novel excitoprotective mechanism involving modulation of tau phosphorylation //J. Neurosci. 2005. Vol. 25, N 50. P. 11542-11552

32) Hood J.L., Brooks W.H., Roszman T.L. Differential compartmentalization of the calpain/calpastatin network with the endoplasmic reticulum and Golgi apparatus // J. Biol. Chem. 2004 V. 279. P. 43126-43135

33) Kolchinskaya L.I., Malysheva M.K. Activity of calpain in subcellular fractions of the rat brain // Neurophysiol. 2004. V. 36. P. 265-271.

34) Kusakawa G.-I., Saito T., Oonuki R. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase activator to p25 // J. Biol. Chem. 2000. Vol. 275. p. 17166-17172.

35) Lee M.-S., Kwon Y. T., Li M., Peng J., Friedlander R.M., Tsai L.H. Neurotoxicity induces cleavage of p35 to p25 by calpain // Nature. 2000. Vol. 405. P. 360-364.

36) Leissring M.A., Akbari Y., Fanger C. M. et al. Capacitative calcium entry deficits and elevated luminal calcium in mutant presenilin-1 knockin mice // J. Cell. Biol. 2000. Vol. 149. P. 793-797.

37) Litersky J.M., Johnson G.V. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain // J. Biol. Chem. 1992. Vol. 267. P. 1563-1568

38) Marcilhac A. Intracellular signaling pathways, apoptosis and neurodegenerative diseases // Psychologie & neuropsychiatrie du vieillissement. 2004. Т. 2. №. 3. С. 203-214.

39) Marcum J. L., Mathenia J. K., Chen R., Cuttmann R.P. Oxidation of thiol-proteases in the hippocampus of Alzheimer’s disease // Biochem. Biophys. Res. Commun. 2005. Vol. 334, N 2. P. 342-348

40) Mellgren R.L. Canine cardiac calcium-dependent proteases: resolution of two forms with different requirements for calcium // FEBS Lett. 1980. V. 109. P. 129-133.

41) Morris R.G.M. Spatial localization does not require the presence of local cues // Learn. Motiv. 1981. V. 2. P. 239-260.

42) Nixon R.A., Mohan P. Calpains in the pathogenesis of Alzheimer’s disease // Calpain: Pharmacology and toxicology of calcium-dependent protease / Ed. by K.K.W. Wang, P.-W. Yuen. Philadelphia (PA): Taylor and Francis, 1999. P. 229-249.

43) Nixon R.A., Saito K.I., Grynspan F., Griffin W.R., Katayama S., Honda T., Mohan P.S., Shea T.B., Beermann M. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease // Ann. N-Y Acad. Sci. 1994. V.747. P. 77-91.

44) Rawlings N.D., Barrett A.J., Bateman A. MEROPS: the peptidase database // Nucleic Acids Res. 2012. V. 40. P. D343-D350.

45) Saito K-I., Elce J.S., Hamos J.E., Nixon R.A. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer’s disease: a potential molecular basis for neuronal degeneration // Proc. Nat. Acad. Sci. USA. 1993. Vol. 90. P. 2628-2632.

46) Selkoe D.J. Alzheimer disease: genes, proteins, and therapy // Physiol. Rev. 81. 2001. Vol. 81. P. 741-766.

47) Tymianski M., Charlton M.P., Carlen P.L., Tator C.H. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons // J. Neurosci. 1993. V. 13.P. 2085-2104.

48) Vaisid T., Kosower N.S., Katzav A., Chapman J., Barnoy S. Amyloid b peptide toxicity in differentiated PC12 cells: Calpain-calpastatin, caspase, and membrane damage // Neurochem. Int. 2007. V. 51. P. 391-397.

49) Wu H.Y., Tomizawa K., Matsui H. Calpain–calcineurin signaling in the pathogenesis of calcium-dependent disorder // Acta Med. Okayama. 2007. V. 61. P. 123-137.

50) Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved “calpain-cathepsin cascade” from nematodes to primate // Cell Calcium. 2004. Vol. 36, N 3-4. P. 285-293.

51) Коросов А.В., Горбач В.В. Компьютерная обработка биологических данных. Петрозаводск: ПетрГУ, 2007.

52) Немова Н.Н., Лысенко Л.А., Канцерова Н.П. Протеиназы семейства кальпаинов. Структура и функции // Онтогенез. 2010. Т. 41. С. 381-389.

53) Рендаков Н.Л., Лысенко Л.А., Люпина Ю.В., Шарова Н.П., Сельверова Н.Б., Немова Н.Н. Роль лизосомальных протеиназ и эстрадиола в нейродегенерации, индуцированной бета-амилоидом // Докл. АН. 2014

Похожие записи