Пример готовой дипломной работы по предмету: Радиотехника
Введение 3
Глава
1. Анализ генератора прямоугольных импульсов с цифровым управлением 5
1.1 Общие сведения цифровых микросхемах 5
1.2. Назначение и принцип действия генератора прямоугольных импульсов 8
1.3. Анализ вариантов технической реализации генераторов прямоугольных импульсов 17
Глава
2. Проектирование генераторов прямоугольных импульсов с цифровым управлением 21
2.1. Постановка задачи генератора прямоугольных импульсов 21
2.2. Разработка структурной схемы генератора прямоугольных импульсов с цифровым генератором 22
2.3. Разработка схемы электрической принципиальной генератора прямоугольных импульсов с цифровым генератором 24
2.4. Расчет основных узлов генератора прямоугольных импульсов 27
2.5. Моделирование генератора прямоугольных импульсов с цифровым управлением 35
Глава
3. Технология изготовления печатной платы генератора прямоугольных импульсов с цифровым управлением. 39
3.1 Особенности и преимущества печатных плат 39
3.2 Материалы 41
3.3 Нанесение изображения схемы на плату 42
3.4 Изготовление печатаных плат химическим травлением 44
3.5 Защитные покрытия РЭА на печатных платах 46
3.6 Комбинированный позитивный метод 47
Глава
4. Организационно-экономическое обоснование проекта 54
4.1. Расчет себестоимости изделия 55
4.2. Расчет затрат на разработку программы 59
4.3. Оценка безубыточности и расчет целесообразного объема продаж 64
Глава
5. Безопасность и экологичность проекта 66
5.1. Основные вредные и опасные производственные факторы, действующие на оператора ПК 66
5.2. Мероприятия по снижению опасных и вредных производственных факторов при работе с ПК 69
5.3. Расчет общего искусственного освещения 76
5.4 Экологические проблемы, возникающие при создании генератора прямоугольных импульсов с цифровым управлением 79
5.5. Организация рабочего места для монтажа генератора прямоугольных импульсов 84
5.6. Охрана труда 91
Заключение 99
Список использованной литературы 101
Содержание
Выдержка из текста
Подобно генераторам синусоидальных (гармонических) напряжений, релаксационные преобразуют энергию источника постоянного тока в энергию электрических колебаний. Однако если в генераторе гармонических колебаний LC-типа происходит непрерывный обмен энергией между конденсатором и катушкой контура и за период расходуется обычно небольшая часть энергии, полученной от источника, то в релаксационном генераторе в течение одной части периода энергия запасается в реактивном элементе только одного типа, обычно в конденсаторе, а в другую часть периода выделяется в виде теплоты в резисторах схемы.
Широко используются релаксационные генераторы, построенные на основе усилителей с положительной обратной связью. Релаксационные генераторы, в которых положительная обратная связь создается с помощью RC-цепей, называют мультивибраторами. Причем глубина положительной обратной связи остается почти постоянной в широкой полосе частот.
Тактовые импульсы часто используются как эталонная частота — считая их количество можно, например, измерять временные интервалы.
Рассмотрим принцип действия генератора. При подключении напряжения питания операционных усилителей (0 и 10В) и некоторого входного напряжения (в обусловленных пределах) на выходе второго операционного усилителя устанавливается напряжение насыщения (под действием положительной обратной связи), которое в соответствии с напряжением питания может быть либо 1В, либо 9В (назовем эти уровни наименьшем и наибольшем выходным напряжением).
Какое именно из этих напряжений установится зависит от начального шумового дифференциального напряжения на входе второго операционного усилителя. Транзистор VT1 является полевым транзистором с изолированным затвором и встроенным каналом n-типа. Его передаточная характеристика (зависимость тока стока от напряжения между истоком и затвором) представляет собой правую ветвь параболы, ветви которой направлены вверх, а вершина лежит на горизонтальной оси левее начала координат.
Данная курсовая проекта была мною разработана на ТТЛ микросхемах серии КР 1533. Причина выбора этой серии – высокая частота работы и выходного сигнала. Требуемою точность установки организовать не получается, она слишком велика. Но режим работы – максимальный по частоте! Максимальная частота в схеме
2. МГц, т.о. все элементы в схеме поддерживают ее работу!………
Для проверки или настройки блоков, содержащих цифровые интегральные микросхемы, часто возникает необходимость использования генератора пачек импульсов с заданной частотой, амплитудой и длительностью импульсов. Сигналы треугольной формы применяются также для обнаружения ограничений сверху или снизу в усилительных каскадах, а также искажений типа «ступенька» в выходных каскадах усилителей звуковой частоты, а также применяется для управления электромоторами.В данной курсовой работе разработан генератор треугольных импульсов с дискретно устанавливаемой частотой, амплитудой и длительностью импульсов, что позволяет использовать его для выполнения перечисленных выше задач, а также для выполнения экспериментальных работ.
В данной курсовой работе разработан генератор трапецеидальных импульсов с дискретно устанавливаемой частотой, амплитудой и длительностью импульсов, что позволяет использовать его для выполнения перечисленных выше задач, а также для выполнения экспериментальных работ.
Схемотехнически электронный генератор представляет собой усилитель, охваченный положительной обратной связью. В качестве усилителя могут быть использованы схемы на дискретных транзисторах, цифровые ИМС, интегральные таймеры, а также операционные усилители. Использование ОУ позволяет построить стабильные генераторы с хорошим воспроизведением формы выходного сигнала.
требования, основные из которых: одинаковое время передачи каждого элемента, минимальные потери на обратный ход и простота технической реализации. Этим требованиям в вещательном телевидении удовлетворяет линейная развертка. Поэтому в большинстве случаев прикладного телевидения используется линейная развертка, в частности прогрессивная и чересстрочная.
Достоинствами блокинг-генераторов являются сравнительная простота, возможность подключения нагрузки через трансформатор, присущая этим схемам способность формировать мощные импульсы, близкие по форме к прямоугольным. Основной отличительной особенностью блокинг-генераторов по сравнению с другими генераторами прямоугольных импульсов (мультивибраторами) является возможность получения большой скважности выходных импульсов. Для формирования импульса с помощью ждущего блокинг-генератора необходимо на его вход подавать запускающие импульсы, амплитуда которых достаточна для открывания транзистора.
Генераторы линейно изменяющегося (пилообразного) напряжения (ГЛИН) нашли широкое применение. Разрабатываемый генератор будет создаваться на цифровых элементах с применением стабильных ГТИ, серий микросхем ТТЛ 155, 555 и 1533.
где f – это частота входного сигнала, равная 1/Т. То есть частота входного сигнала пропорциональна коду N, а коэффициент пропорциональности равен 1/t
0. Если, например, выбрать t 0 1 с, то код N будет равен частоте входного сигнала в герцах, а при t 0 1 мс код N будет равен частоте входного сигнала в килогерцах.
Список источников информации
1.Микропроцессорные системы: Учеб. пособие для вузов/Александров Е.К и др. Под общ. ред. Д.В.Пузанкова — СПб.: Политехника, 2002. – 935 с.
2.Евстифеев А.В. Микроконтроллеры AVR семейств Tiny и Mega фирмы “ATMEL”. М.: Издательский дом “Додэка-ХХI”, 2004 г. – 560с. ISBN 5-94120-081-1.
3.Баранов В.Н. Применение микроконтроллеров AVR: схемы, алгоритмы, программы. – М.: Издательский дом “Додэка-ХХI”, 2004 г. – 288с.: ил.
4.Бродин В. Б., Калинин А.В. Системы на микроконтроллерах и БИС программируемой логики. — М.: ЭКОМ, 2002. — 400с.:
- 5.Семенов Б. Ю. Шина I2C в радиотехнических конструкциях. — СОЛОН – Р, 2002.
6.“The I2C-bus and how to use it”, 1995 г. Philips Semiconductors
7.Голубцов М.С. Микроконтроллеры AVR: от простого к сложному. – М.: СОЛОН-Пресс, 2003.
8.Каган Б.М., Сташин В.В. Основы проектирования микропроцессорных устройств автоматики. – М.: Энергоатомиздат, 1987.
9.Клингман Э. Проектирование специализированных микропроцессорных систем. – М.: Мир, 1985.
10.Предко М. Руководство по микроконтроллерам. В II томах. – М.: Постмаркет, 2001.
11.Сташин В.В., Урусов А.В., Мологонцева О.Ф. Проектирование цифровых устройств на однокристальных микроконтроллерах. – М.:. Энергоатомиздат, 1990.
12.Фридмен М., Ивенс Л. Проектирование систем с микрокомпьютерами. – М.: Мир, 1986
13.Фритч В. Применение микропроцессоров в системах управления. – М.: Мир, 1984.
14.Белов А.В. Микроконтроллеры АVR в радиолюбительской практике – СП-б, Наука и техника, 2007 – 352с.
15.Кравченко А.В.
1. практических устройств на AVR-микро-контроллерах. Книга 1 – М., Додэка–ХХ
1. МК-Пресс, 2008 – 224с.
16.Трамперт В. Измерение, управление и регулирование с помощью АVR-микроконтроллеров: Пер. с нем – К., МК-Пресс, 2006 – 208с.
17.Мортон Дж. Микроконтроллеры АVR. Вводный курс /Пер. с англ. – М., Додэка–ХХ 1, 2006 – 272с.
18.www.gaw.ru
19.www.atmel.ru
20. Кизлюк А.И. Справочник по устройству и ремонту телефонных аппаратов заграничныого и отечественного производства – М.: Антелком, 2003г.
21. Кривандин С. Модульные источники питания – М.: ЗАО Компэл, 2005г.
22. Лопаткин А. P-CAD 2004 – СПб.: БХВ-Петербург, 2006г.
23. Справочник. Операционные усилители и компараторы – М.: Додэка-XXI, 2002г.
24. Трасковский А. Устройство, модернизация, ремонт IBM PC – СПб.: БХВ-Петербург, 2004г.
25. Угрюмов Е.П. Цифровая схемотехника – СПб.: БХВ-Петербург, 2004г
список литературы