Пример готовой дипломной работы по предмету: Методы защиты информации
Введение 3
1. Обзор характеристик известных помехоустойчивых кодов со скоростью больше 0.5 5
1.1. Коды Хемминга………………………………………………
1.2. Коды Боуза-Чоудхури-Хоквингема……………………….
1.3. Коды Рида-Соломона……………………………………..
1.4. Мажоритарно декодируемые коды………………………
2. Анализ математических моделей сверточных кодов 23
3. Разработка программных моделей защищенных каналов с вариантами кодеков 29
3.1. Разработка сверточного помехоустойчивого кодирования…
3.2. Описание метода помехоустойчивого кодирования сигнала
4. Анализ помехоустойчивости вариантов кодеков с различными типами модуляции и каналов 39
5. Экономическая часть……………………………………………….
5.1. Введение
5.2. Этапы работ по разработке системы аудита.
5.3. Определение трудоемкости этапов разработки
5.4 Затраты на заработную плату работникам, непосредственно занятым при выполнении указанных работ по трудовому договору
5.5 Страховые взносы
5.6 Стоимость специального оборудования и специальной оснастки.
5.7 Амортизация объектов основных средств.
5.8 Общехозяйственные расходы.
5.9 Заключение
6. Охрана труда и окружающей среды………………………………
6.1. Анализ условий труда специалиста по защите информации
6.2. Разработка мероприятий для снижения ЭМП ПЭВМ
6.3. Разработка мероприятий по защите от электроопасности
6.4. Выводы
Заключение 65
Литература 46
Приложение 57
Содержание
Выдержка из текста
То есть, блок из N символов кодируется снова в такой же блок из N символов, и проверочные символы находятся среди информационных. Идея основана на специальном представлении, инвариантном к определенному классу векторных преобразований.
В первой серии выполнялись исследования характеристики направленности антенны с учетом влияния амплитудных и фазовых ошибках, во второй исследование характеристики направленности антенны с учетом неработающих элементов, в третьем были рассмотрены методы сортировки элементов в антенных решетках.Научная новизна работы заключается в предлагаемом методе расчета влияния ошибок на характеристики направленности антенны.
В работе пойдёт речь об умножителе частоты на варакторном диоде [3].
Варактор — [от англ. var(iable) — переменный и act — действие], полупроводниковый диод, по принципу действия аналогичный варикапу. Используется преимущественно как нелинейный элемент в умножителях частоты, а также для усиления колебания в параметрических усилителях сверхвысокочастотного диапазона.
Целью данной выпускной квалификационной работы является на основе анализа характеристик средств защиты информации от утечки по акустоэлектрическим каналам, в программной среде NI Multisim 13.0 разработать виртуальный лабораторный стенд исследования характеристик средств защиты информации от утечки по акустоэлектрическим каналам, смоделировать акустоэлектрические каналы утечки информации и средства защиты от них, исследовать их основные характеристики.
• помехи, вызванные внешними источниками и атмосферными явле-ниями. Помехи — это электрические возмущения, возникающие в самой аппаратуре или попадающие в нее извне. Наиболее распространенными являются флуктуационные (случайные) помехи. Они представляют собой последовательность импульсов, имеющих случайную амплитуду и следующих друг за другом через различные промежутки времени. Примерами таких помех могут быть атмосферные и индустриальные помехи, которые обычно проявляются в виде одиночных импульсов малой длительности и большой амплитуды. Возможны и сосредоточенные помехи в виде синусоидальных колебаний. К ним относятся сигналы от посторонних радиостанций, излучения генераторов высокой частоты. Встречаются и смешанные помехи. В приемнике помехи могут настолько ослабить информационный сигнал, что он либо вообще не будет обнаружен, либо искажен так, что “единица” может перейти в “нуль” и наоборот.
Методическая основа исследования. При подготовке дипломной работы использовались общетеоретический, сравнительный, аналитический, исторический, дедуктивный методы и метод анализа литературы и источников.
С научно-исследовательской точки зрения важно проследить, как влияет выбор радиожурналистом языковых средств и речевых приемов на восприятие и понимание радиотекста современным потребителем медиапродукции, обогащается ли при этом русский язык, не нарушаются ли общепринятые языковые нормы.
- рассмотреть характеристику идентификационных признаков товаров группы 22 в целях классификации по ТН ВЭД ЕАЭС;
Методология. В процессе написания работы, прежде всего, был использован диалектический метод как основной способ объективного и всестороннего познания действительности. Кроме того, применялся комплексный подход, основанный на анализе и синтезе — исследуется содержание правовых норм и практика их применения (решения судов).
Список источников информации
1. Аникин И.В. Методы нечеткой обработки, распознавания и анализа предметов / И.В. Аникин, М.Р. Шагиахметов // Распознавание образов и анализ сцен: труды 5 межд. конф. — С.-Петербург, 2002. — т.1. — С. 16-20.
2. Асмус В.В. Параллельные вычисления в обработке данных дистанционного зондирования земли / В.В. Асмус, А.А. Бучиев, В.П. Пяткин //Цифровая обработка сигналов и ее применение: труды 8 межд. науч.-тех. конф. — Москва, 2006. — т.2. — С. 467- 471.
3. Ахметшин А.М., Федоренко А.Е. Применение теории марковских случайных полей для сегментации мультиспектральных изображений земной поверхности. http://gis.nmu.org.ua/lit/doc 2.doc
4. Ахметшин А.М., Фенога Д.А. Отображение и анализ мультиспектральных изображений земной поверхности в базисе Грамма – Шмидта. http://gis.nmu.org.ua/lit/doc 1.doc
5. Бакут П. А. Теория обнаружения сигналов / П.А. Бакут. – М.: Радио и связь, 1984. – 440 с.
6. Бакут П.А., Колмогоров Г.С. Сегментация изображений: Методы выделения границ областей / П.А. Бакут, Г.С. Колмогоров. // Зарубежная радиоэлектроника. – 1987, — № 10.- С. 16-23
7. Балакришнан А.В. Теория фильтрации Калмана: Пер. с англ./А.В.Балакришнан – М.: Мир, 1988, -168 с.
8. Бейтмен Г. Таблицы интегральных преобразований / Г.Бейтмен, А. Эрдейи, М.: Наука, 1989, T1, 343 с.
9. Белов В.В.Обнаружение аномалий подстилающей поверхности земли в ансамбле космических снимков алгоритмами разладки для геоинформационных систем (ИОА СО РАН, Томск)
10. Бендат Д. Прикладной анализ случайных данных / Д. Бендат, А. Пирсол – М.: Мир, 1989. — 540 с.
11. Богомолов Р.А. Ковариационные функции авторегрессионных случайных полей/ Р.А. Богомолов, В.Р. Крашенинников //Методы обработки сигналов и полей: сб. научн. тр. – Ульяновск: УлПИ, 1990. – С. 5-9.
12. Бокс Д. Анализ временных рядов / Д. Бокс, Г. Дженкинс // Пер. с англ.: Под ред. В.Ф. Писаренко. – М.: Мир, 1974, кн. 1. – 406 С.
13. Бондур В. Г. Моделирование многоспектральных аэрокосмических изображений динамических полей яркости. / В. Г. Бондур, Н. И Аржененко, В. Н. Линник, И. Л. Титова // Исследование Земли из космоса. — 2003, -№ 2.- С. 3-17
14. Брокштейн И. М. , Мерзляков С. Н., Попова Н. Р. Обнаружение и локализация малоразмерных объектов на неоднородном фоне // Цифровая оптика. Обработка изображений и полей в экспериментальных исследованиях.
15. Бронников А.В. Комбинированные алгоритмы нелинейной фильтрации зашумленных сигналов и изображений / А.В.Бронников, Ю.Б Воскобойников // Автометрия. – 1990, № 1.
16. Буряк Д.Ю., Визильтер Ю.В. Автоматизированное конструирование близких к оптимальным процедур идентификации и обнаружения объектов на изображении с использованием генетических алгоритмов.
17. Буряк Н.В., Визильтер Ю.В., Метод обнаружения и идентификации объектов на цифровых изображениях.
18. Ванштейн Л. А. Выделение сигналов на фоне случайных полей / Л. А. Ванштейн, В. Д. Зубаков. – М.: Сов. Радио, 1960
19. Васильев К. К. Алгоритмы обнаружения и оценивания параметров сигнала на многомерных сетках./ К. К. Васильев, Д. Н. Кадеев // Статистические методы обработки сигналов. – Новосибирск: НЭТИ, 1991. – С. 60-59
20. Васильев К. К. Методы фильтрации многомерных случайных полей / К. К.Васильев, В.Р.Крашенинников.- Саратов: СГУ, 1990.-124 с.
21. Васильев К. К. Прием сигналов при мультипликативных помехах./К.К. Васильев. – Саратов: СТУ, 1983. -128 с.
22. Васильев К. К. Прикладная теория случайных процессов и полей / К. К.Васильев, В.А. Омельченко — Ульяновск: УГТУ, 1995.-255 с.
23. Васильев К. К. Применение адаптивной декорреляции для обработки изображений / К. К.Васильев, С. А. Агеев // Наукоемкие технологии, -2002.- № 3. -С. 25-31.
24. Васильев К.К. Адаптивные алгоритмы обнаружения аномалий на последовательности многомерных изображений / К.К. Васильев, В.Р.Крашенинников // Компьютерная оптика. – 1995.- вып. 14, С. 125-132.
25. Васильев К.К. Алгоритмы обработки многозональных изображений/ К.К.Васильев, В.Е.Дементьев // Современные проблемы создания и эксплуатации радиотехнических систем: тр. 4 всерос. науч.-практ. конф. — Ульяновск, 2004, -С.14-17.
26. Васильев К.К. Алгоритмы оптимального обнаружения сигналов с неизвестными уровнями на многозональных изображениях / К.К.Васильев, В.Е.Дементьев // Цифровая обработка сигналов и ее применение: труды 8 межд. науч.- техн. конф.-М., 2006. — т.2. — С. 433-436.
27. Васильев К.К. Анализ эффективности фильтрации плоских изображений / К.К.Васильев, В.Г. Герчес // Вероятностные модели и обработка случайных сигналов и полей: сб. научн. тр. – Киев: УМК ВО.- 1991.- С. 115-122.
28. Васильев К.К. Исследование эффективности фильтрации изображений при треугольной развертке / К.К. Васильев, В.Г. Герчес // Методы обработки сигналов и полей: сб. научн. тр. – Ульяновск: УлПИ.- 1992.- С. 33-44.
29. Васильев К.К. Обнаружение протяженных аномалий на многомерных изображениях / К.К. Васильев // Вестник УГТУ. – Ульяновск. – 2006. — № 4. — с. 31-33
30. Васильев К.К. Обнаружение сигнала на последовательности изображений / К.К. Васильев // Математические и технические проблемы обработки визуальной информации. — Новосибирск: ВЦ СО РАН. – 1992.- С. 49 — 64.
31. Васильев К.К. Обнаружение сигналов с неизвестными уровнями на многозональных изображениях / К.К. Васильев, А.А. Горин // Труды Ульяновского научного центра «Ноосферные знания и технологии». –Ульяновск, 2001. -Т.3, Вып.1.- С.9-13
32. Вернер М. Основы кодирования. – М.: Техносфера, 2006. – 288 с.
33. Васильев К.К. Представление и быстрая обработка многомерных изображений. / К.К.Васильев, В.Р.Крашенниников, И.Н Синицын, В.И.Синицын // Наукоемкие технологии.- 2002. — № 3. — С. 4-24.
34. Васильев К.К. Рекуррентное оценивание случайных полей на многомерных сетках / К.К.Васильев // Методы обработки сигналов и полей.- Саратов. – 1986. — с. 18-33.
35. Васильев К.К. Статистические методы обработки многомерных изображений / К.К.Васильев, А.А.Спектор // Методы обработки сигналов и полей. – Ульяновск: УлПИ, 1992, C. 3-19
36. Васюков В.Н. Квазиоптимальный алгоритм двумерной фильтрации / В.Н. Васюков// Методы статистической обработки изображений и полей.- Новосибирск, 1984, C. 14-18.
37. Васюков В.Н. Новые подходы к решению задач обработки и распознавания изображений / В.Н.Васюков, И.С.Грузман, М.А.Райфельд, А.А.Спектор // Наукоемкие технологии.- 2002. — № 3. — С. 44-51.
38. Визильтер Ю.В., Лагутенков А.В. Автоматическое выделение и сопровождение малоразмерных объектов по признаку их движения на цифровых изображениях
39. Гай В.Е. Формирование тестовых изображений для оценки качества алгоритмов сегментации / В.Е. Гай, С.Н. Борблик // Цифровая обработка сигналов и ее применение: тр. 8 межд. науч.-техн. конф. –М., 2006. — т.2. — С. 356-359.
40. Герчес В.Г. Обнаружение сигналов на многозональном изображении: дис. канд. техн. наук./ В.Г. Герчес. -Ульяновск, 1992.- 143с.
41. Гонсалес Р. Цифровая обработка изображений / Р.Гонсалес, Р. Вудс, М.: Техносфера, 2005. – 1072 с.
42. Градштейн И.С. Таблицы интегралов, сумм, рядов и произведений / И.С.Градштейн, И.М.Рыжик, М.: Наука, 1971. – 1108 с.
43. Грузман И. С. Цифровая обработка изображений в информационных системах / И. С. Грузман [и др.], Новосибирск:НГТУ, 2002. — 456 с.
44. Даджион Д. Цифровая обработка многомерных сигналов / Д. Даджион , Р. Мерсеро, М.: Мир. 1988. – 488 с.
45. Желтов С.Ю., Сибиряков А.В., Выделение характерных черт на цифровых изображениях авиационной и космической съемки.
46. Завалишин Н.В. Модели зрительного восприятия и алгоритмы анализа изображений / Н.В.Завалишин, И.Б.Мучник, М.: Наука, 1974. — 344 с.
47. Блейхут О. Теория и практика кодов, контролирующих ошибки / пер. с англ. – М.: Мир, 1986. – 576 с.
48. Вернер М. Основы кодирования. – М.: Техносфера, 2006. – 288
49. СанПиН 2.2.2/2.4.2620-10. Гигиенические требования к персональным электронно-вычислительным машинам и организации работ.
50. СанПиН 2.2.4.1191-03. Электромагнитные поля в производственных условиях.
51. ГОСТ 12.1.038-82. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов.
52. Правила Устройства Электроустановок. Издание седьмое от 08.07.02
53. ГОСТ 12.1.005 –
8. ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны
список литературы