Пример готовой дипломной работы по предмету: Физика
Содержание
1.Понятие плазмы
1.1.Общие сведения о плазме
1.2.Классификация видов плазмы
2. Плазма в магнитном поле
2.1. Движение заряженных частиц в магнитном поле
2.2. Кинетическая теория плазмы в магнитном поле
3. Магнитная гидродинамика
3.1. Уравнения магнитной гидродинамики
3.2. Простейшие равновесные системы
3.3. Волны в магнитной гидродинамике
3.4. Анизотропная магнитная гидродинамика
4. Устойчивость плазмы в гидродинамическом приближении
4.1. Метод малых колебаний
4.2. Устойчивость плоской границы и скинированного пинча
4.3. Устойчивость цилиндрического пинча
Список литературы
Содержание
Выдержка из текста
Дифракционная решетка, имеющая порядок 0,03 мм, освещается светом с длиной волны
60. нм.
Для этого необходимо решить следующие задачи: раскрыть понятие длинной волны, определить природу и сущность этого явления, исследовать взаимовлияние длинных волн и экономических циклов, а также рассмотреть факторы – тенденции, сопровождающие этого явление.
На какую длину волны в спектре второго порядка накладывается фиолетовая линия (λ=0,4 мкм) спектра третьего порядка?
Температурный диапазон испытаний позволил рассматривать достаточно широкие исследуемые процессы и явления. Проведенные исследования металлов, металлических монокристаллов получили ряд специфических особен ностей высокоскоростного ( 104 с-1 ) деформирования и разрушения в ударных волнах. Эти особенности интересны для специалистов в области физики прочности и пластичности.
Призма отклоняет фиолетовые лучи сильнее, чем красные. Спектры от центральной части наложатся друг на друга со смещением и дадут белый цвет. Спектры от краев полоски окажутся не скомпенсированными, поэтому верхний край окрасится в фиолетовый цвет, а нижний в красный. Ответ: верх фиолетовый, низ красный.
Пренебрегая активным со-противлением контура, определите максимальный заряд Qm на обкладках конденсатора, если максимальная сила тока в контуре Im = 1 А.
Атомы люминофора поглощают фиолетовый и ультрафиолетовый свет, переходя из основного в возбужденное состояние. Однако, обратный переход из возбужденного в основное состояние происходит не прямо (тогда бы люминофор светился фиолетовым и ультрафиолетовым светом), а через промежуточные энергетические уровни. В результате на один поглощенный коротковолновый фотон приходится два и более высвеченных фотона с большей длиной волны.
Вопрос
5. Как называется квантовомеханический принцип, согласно которому состояния системы частиц, получающиеся друг из друга перестановкой одинаковых частиц местами, нельзя различить ни в каком эксперименте?
Вопрос
4. Положение бусинки массы 1г и положение частицы массы 10 – 27г на оси x оценены с одинаковой точностью. Как будут соотносится квантовомеханические неопределенности vБ и vЧ проекций компонент их скоростей на ось x ?
Поэтому можно сказать, что плазма представляет собой смесь компонент с различными температурами. Из-за различия в величине средней кинетической энергии электронов, ионов и нейтральных частиц в плазме вместо одной общей температуры следует различать три разные температуры электронную Te, ионную Ti и атомную T0. Обычно Te >> Ti > T0 где >> означает «во много раз больше». Внешние источники электрической энергии, с помощью которых создаётся и поддерживается газовый разряд, передают энергию непосредственно электронам плазмы, т.
лагал, что все тела состоят из четырёх низших элементов-стихий: земли, воды, воздуха и огня. Дальнейшее развитие науки наполнило новым содержанием эти термины. Действительно вещество может быть в четырёх состояниях: твёрдом, жидком, газообразном и плазменном.
Список литературы
1.Альвен Х.Космическая электродинамика. Пер. с англ. – М., Издательство иностр. лит., 1952.
2.Арцимович Л.А., Сагдеев Р.З. Физика плазмы для физиков. – М., Автомиздат, 1979.
3.Арцимович Л.А. Замкнутые плазменные конфигурации. – М., «Наука», 1969.
4.Ахиезер А.И. и др. Электродинамика плазмы. – М., «Наука», 1974.
5.Ваденов А.А., Велихов Е.П., Сагдеев Р.З. Устойчивость плазмы. – «Успехи физических наук», т. 73, 1961.
6.Гизбург В.В., Рухадзе А.А. Волны в магнитоактивной плазме. – М., «Наука», 1960.
7.Голант В.Е. Основы физики плазмы. – М., Автомиздат, 1975.
8.Иванов А.А. Физика сильнонеравновесной плазмы. – М., Атомиздат, 1977.
9.Кадомцев Б.Б. Коллективные явления в плазме. – М., «Наука», 1976.
10.Ломинадзе Д.Г. Циклонные волны в плазме. – Тбилиси., «Мецнииреба», 1975.
11.Михайловский А.Б. Теория плазменных неустойчивостей. Т.1. Неустойчивости однородной плазмы. Изд. 2-ое, перераб. и доп. М., Автомиздат, 1975; Т.2. Неустойчивости неоднородной плазмы. Изд. 2-ое, перераб. и доп. М., Автомиздат, 1977.
12.Пикельнер С.Б. Основы космической электродинамики. – М., Физматгиз, 1961.
13.Силин В.П. Параметрическое воздействие излучения большой мощности на плазму. – М., «Наука», 1973.
14.Силин В.П., Рухадзе А.А. Электромагнитные свойства плазмы и плазмоподобных сред. – М., Атомиздат, 1961.
15.Стикс Т.Х. Теория плазменных волн. Пер. с англ. М., Атомиздат, 1965.
16.Трубников Б.А. Теория плазмы. — М., Энергоатомиздат, 1996.
список литературы