Пример готовой дипломной работы по предмету: Программирование
Содержание
Введение 1
1 ИССЛЕДОВАТЕЛЬСКИЙ РАЗДЕЛ 5
1.1 Анализ существующих систем сбора и обработки информации (ССОИ) 5
1.2 Функции ССОИ в составе комплексов ТСОС 18
1.3 Формирование требований к разрабатываемому устройству и обоснование его облика 19
1.3.1 Обоснование функций системы охранной сигнализации 19
1.3.2 Выбор структуры построения комплекса ТСОС, и определение информационного облика проектируемого устройства 19
2 СПЕЦИАЛЬНЫЙ РАЗДЕЛ 23
2.1 Разработка структурной схемы системы охраны 23
2.2 Разработка структурной схемы блока кодирования 24
2.3 Разработка функциональной схемы блока кодирования 27
2.4 Описание работы блока кодирования 29
2.5 Выбор элементной базы 31
2.6 Разработка принципиальной схемы блока кодирования 34
2.7 Расчет геометрических параметров печатной платы 35
2.7.1 Определение конструктивных параметров печатной платы 35
2.7.2 Определение габаритных размеров печатной платы 80
2.7.3 Расчет элементов проводящего рисунка 81
2.8 Расчет теплового режима 85
2.9 Расчет надежности 90
2.10 Расчет ударопрочности конструкции РЭА 93
3 ЭКОНОМИЧЕСКИЙ РАЗДЕЛ 97
3.1 Планирование технической подготовки производства ультразвукового датчика с разработкой календарного графика 97
3.1.1 Определение трудоемкости разработки рабочей документации 97
3.1.1.1 Определение числа чертежных листов и текстовой документации, приведенных к формату А 4 97
3.1.2 Трудоемкость стадий программного кода 98
3.1.3 Разработка календарного графика (сетевого графика) технической подготовки производства 99
3.1.4. Оптимизация сетевого графика 102
3.2 Расчет экономических показателей и эффективности проекта 106
3.2.1 Расчет себестоимости изготовления фильтра 106
3.2.1.1 Расчет затрат на сырье и основные материалы 106
3.2.1.4 Расчет основной заработной платы 109
3.2.1.5 Расчет дополнительной заработной платы 110
3.2.1.6 Расчет полной заработной платы 110
3.2.1.7 Расчет налогов и отчислений от оплаты труда 110
3.2.1.8 Расчет затрат на амортизационные отчисления 111
3.2.1.10 Расчет затрат на электроэнергию 114
3.2.1.11 Расчет цеховых расходов 115
3.2.1.12 Расчет общезаводских расходов 115
3.2.1.13 Расчет прочих производственных расходов 115
3.2.1.14 Расчет производственной себестоимости 115
3.2.1.15 Расчет внепроизводственных расходов 116
3.2.1.16 Расчет полной себестоимости 116
3.2.2 Ценообразование 116
3.2.3 Определение точки самоокупаемости производства изделия 116
3.2.4 Определение срока окупаемости проектируемого изделия 118
3.2.5 Определение экономической эффективности функционального узла 119
4 Безопасность жизнедеятельности 122
4.1 Актуальность вопросов охраны труда и окружающей природной среды 122
5.2. Характеристика условий труда программиста 123
5.3. Требования к производственным помещениям 124
5.3.1 Окраска и коэффициенты отражения 124
5.3.2 Освещение 124
5.3.3 Параметры микроклимата 126
5.3.4 Шум и вибрация 128
5.3.5 Электромагнитное и ионизирующее излучения 129
5.4 Эргономические требования к рабочему месту 130
5.5 Режим труда 135
5.6 Расчет освещенности 136
5.7 Расчет уровня шума 139
ЗАКЛЮЧЕНИЕ 141
Выдержка из текста
Из истории создания и развития технических устройств для охраны, в современной терминологии – технических средств охраны (ТСО), известно, что они основывались на применении законов механики. Наиболее часто использовались разного вида и сложности капканы, ловушки, путанка, самострелы и т.п., предназначенные для захвата или уничтожения злоумышленника (видимо, в те времена законы позволяли применение жестких мер при защите собственности).
Часто средства сигнализации представляли собой устройства, производящие звуки (например, гонг) при срабатывании механизма обнаружения (например, рычаг, связанный с утепляемой ступенью лестницы).
Из-за сложности передачи тревожных сигналов от устройств до сторожей сигнализаторы устанавливались в основном вблизи самих устройств. Но в некоторых случаях разрабатывались системы и с сигнализаторами, удаленными от самого устройства (есть примеры, когда устройство обнаружения по натянутому в полой стене проводу или прочной нити передавало механический импульс на исполнительный механизм (гонг) в комнате охраны).
Открытие электричества и в дальнейшем появление электронных приборов дало мощный толчок в развитии технических средств охраны.
Примером простейшей электронной системы охраны может служить сигнализация, применявшаяся в недалеком прошлом (зачастую применяемая во многих регионах нашей страны и в настоящее время) для защиты магазинов. Широко применяются устройства обнаружения угроз проникновения нарушителя (по принятой терминологии – СО), например: магнитоуправляемый контакт (геркон) на дверях (раньше использовались контакторы и кнопки), датчики разбития стекла на окнах, детекторы возгорания и устройства сигнализации, как то: сирена, звонок громкого боя и лампа, которая должна мигать при тревоге и т.д. Такие системы рассчитаны на испуг преступников быть пойманными, на привлечение внимания службы охраны (если таковая имеется) и на сознательность граждан, которые, услышав звуки сирены или звонка, должны вызвать милицию. Однако ясно, что для повышения эффективности защиты объекта охраны необходимо наличие средств передачи сигналов охранной сигнализации до служб безопасности (милиции, полиции, караула и т.п.), ибо свидетелей может и не быть, или они смогут проявить равнодушие или боязнь.
Другой пример. Охраняется крупное здание и прилегающая территория. Сработало СО, отвечающее за определенный кабинет (участок территории), и звенит звонок. Охранникам для начала надо среагировать на этот сигнал (звук сигнализации должен быть достаточно громким, чтобы его можно было услышать в караульном помещении), а затем, ориентируясь по звуку, найти охраняемое помещение (участок территории), которое подверглось нападению. Практика показывает, что при охране больших зданий и плотно застроенных территорий охране будет трудно найти быстро место (участок), где произошло нарушение, вызвавшее сигнал тревоги.
Поэтому очевидно, что и в этом случае необходимо осуществлять передачу тревожных сигналов в определенные помещения, где находится служба охраны. Причем, сигнализатор должен позволять достаточно точно указывать место проникновения нарушителя. Таким образом, существует объективная необходимость в наличии системы, позволяющей осуществлять оперативно процессы сбора, передачи, обработки, отображения и документирования информации. Эта система должна обеспечивать передачу сигналов от средств обнаружения до караульного помещения (оператору ССОИ), распознание сигналов тревоги и вывод тревожной информации в форме, доступной для восприятия человеком. Часто бывает необходимым и документирование оперативной информации для последующего изучения и контроля за действиями персонала службы безопасности.
На начальных этапах ССОИ строились по принципу «каждый с каждым», т.е. каждому СО соответствовала своя линия связи и свой сигнализатор – канал сигнализации. Такая схема построения накладывала ограничения на количество каналов сигнализации и количество охраняемых объектов. Учитывая эти недостатки, стали разрабатывать системы с другой структурой построения (кольцевые, шлейфовые) и новые методы передачи информации (использование телефонных линий, радиолинии, в последнее время — оптоволоконные линии) с целью построения систем с большим количеством СО (систем большой емкости).
При этом оказалось, что без контроля работоспособности СО, линий связи, средств отображения эффективное использование системы сигнализации вызвало много трудностей. Первоначально проверка совершалась людьми путем периодического технического осмотра аппаратуры. Однако для нормальной работы системы требуется постоянный контроль всех частей системы сигнализации и оперативное информирование службы охраны о неисправностях. Громоздкая элементная база не позволяли создавать малогабаритную, дешевую и энергетически малопотребляемую систему контроля. По мере развития электроники и появления все более удобных и надежных приборов появилась возможность разрабатывать и реализовывать схемы контроля за состоянием компонентов самих ССОИ.
Параллельно с развитием техники передачи и отображения шло развитие СО. Стали появляться датчики, основанные на различных принципах работы (радиоволновые, радиолучевые, магнитометрические, механические).
Для их работы требуется электропитание, которое может осуществляться с помощью индивидуального источника питания, централизованной подачи электропитания или смешанного варианта обеспечения электропитания. ССОИ должно обеспечивать электропитание устройств отображения и контроля.
С появлением электровакуумных приборов появилась возможность создавать более удобные средства отображения, чем лампочки, звонки и т.п., например, электронное табло, на которое стала выводиться информация о режимах и состояниях каналов сигнализации, техническом состоянии СО и частей ССОИ по команде оператора. Появилась возможность использовать одно и то же средство отображения для вывода разной информации в зависимости от требований оператора. С появлением полупроводниковых приборов проблема создания таких средств отображения значительно упростилась.
Важным этапом в развитии ССОИ было появление запоминающих устройств. Первоначально это были магнитофоны с магнитной пленкой, намагниченной проволокой и т.п.
Такие устройства были громоздки, неудобны в обращении и ненадежны. В дальнейшем мощным толчком в развитии послужило появление полупроводниковых запоминающих устройств. Были созданы оперативные запоминающие устройства (ОЗУ), которые позволяли хранить информацию в течение длительного времени и выводить ее на табло в нужное время.
Параллельно с развитием запоминающих устройств шло развитие средств документирования. Были созданы разного рода цифропечатающие устройства, которые распечатывали оперативные сообщения или, в случае совместной работы с ОЗУ, информацию, содержащуюся в ОЗУ.
Список использованной литературы
1 ГОСТ 12.0.003-74 ССБТ. Опасные и вредные производственные факторы. Классификация. М., 1980.
2 ГОСТ 12.1.004-91 Пожарная безопасность. Общие требования, М., 1992.
3 СНиП 2.4.79 Естественное и искусственное освещение. М., 1979
4 СНиП 2-12-77 Защита от шума. М., 1977
5 ГОСТ 20406 –
75. Платы печатные. Термины и определения. Переиздание с изменениями. М. : Издательство Стандартов, 1990.
6 СНиП 21-01-97 Пожарная безопасность зданий и сооружений. М. 1997.
7 Пирогова Е.В. Проектирование и технология изготовления печатных плат: Учебник. – М. : Форум: ИНФРА – М, 2005 – 560 с.
8 Кудрявцев А.А., Лопаткин А.В. Проектирование печатных плат в системах P – CAD. М. : САИНС – ПРЕСС 2006.
9 Парфенов Е. М., Камышная Э. Н., Усачев В. П. Проектирование конструкций радиоэлектронной аппаратуры. – М. : Радио и связь, 1989.
10 Конструкторско – технологическое проектирование электронной аппаратуры. Под редакцией Шахнова В.А. – М. : Издательство МГТУ им. Баумана, 2002.
11 Фатхутдинов Р.А., Организация производства. М. : ИНФРА – М, 2003.
12 Выварец А. Д., Экономика предприятия. – М. : ЮНИТИ, 2007.
13 Катаранов Б.А., ЛарионовА.А.,Основы цифровой схемотехники. Серпухов. :СВКИУ РВ 1994.
14 Цифровые логические микросхемы. Под редакцией Борисенко В.А.. – М. : Радио и связь, 1999.