Пример готовой дипломной работы по предмету: Схемотехника и моделирование
ВВЕДЕНИЕ 3
1. АНАЛИЗ СОСТОЯНИЯ ВОПРОСА 5
1.1 Обзор устройств измерения емкости 5
2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА 10
3. РАЗРАБОТКА УСТРОЙСТВА ИЗМЕРЕНИЯ ЕМКОСТИ 13
4. КОНСТРУКТОРСКАЯ ЧАСТЬ 22
4.1 Анализ технических требований (эксплуатационных и технологических), которые должны быть реализованы в проектируемом изделии 22
4.2 Обоснование конструкции сборочных единиц, входящих в изделие 24
4.3 Обоснование конструкции проектируемых деталей, входящих в изделие 34
4.4 Разработка технологического процесса сборки 46
4.5 Расчёт показателей надёжности изделия и анализ полученных результатов 47
5. ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ 53
5.1. Расчет производственных затрат 53
5.2. Стоимость реализации проекта 57
5.3. Цена изделия 57
5.4 Инвестиции, необходимые для реализации проекта 58
5.5. Эксплуатационные расходы 58
5.6. Потоки денежных поступлений и выплат 60
5.7. Расчет показателей оценки эффективности инвестиций 64
6. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ 66
6.1. Охрана труда 66
6.2. Экологичность проекта 75
6.3. Эксплуатация и ремонт 76
6.4 Проектирование механической местной вентиляции 77
6.5 Электробезопасность 78
ЗАКЛЮЧЕНИЕ 84
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 85
Содержание
Выдержка из текста
Применение МП в современных цифровых устройствах управления и обработки информации стало обыденной реальностью. Массовый выпуск микропроцессорных наборов больших интегральных схем (БИС) с широкими функциональными возможностями и низкой стоимостью обеспечила исключительные преимущества цифровым методам информации.Цель данного дипломного проекта – разработка устройства портативного изменрения емкости.
Применение МП в современных цифровых устройствах управления и обработки информации стало обыденной реальностью. Массовый выпуск микропроцессорных наборов больших интегральных схем (БИС) с широкими функциональными возможностями и низкой стоимостью обеспечила исключительные преимущества цифровым методам информации.Цель данного дипломного проекта – разработка устройства портативного изменрения емкости.
В данной квалификационной выпускной работе рассмотрены вопросы разработки современных цифровых приборов, предназначенных для измерения электрических величин.Цель работы: разработать цифровой измеритель угла сдвига фаз между током и напряжением бортовой сети летательного аппарата.• разработать конструкцию печатной платы и общий вид измерителя;
Именно поэтому формируется цель курсового проекта: разработка цифрового измерителя тока и напряжения (вольтамперметр).
Измерения температуры – наиболее распространенные. Широкий диапазон измеряемых температур, разнообразие условий использования средств измерений и требований к ним определяют многообразие применяемых средств измерения температуры. Существует различные классы датчиков для измерения температуры. Один из наиболее широко применяемый датчик это датчик на основе терморезисторов.
В процессе дипломного проектирования проведено технико-экономического обоснование, разработана полная электрическая схема измерителя, а так же алгоритм работы функционального и аппаратного программного обеспечения. Так же рассчитана себестоимость разработки и оценена ее экологичность.
возможность связи прибора с персональным компьютером для документирования результатов измерения или программной обработки результатов измерения (например, построение графиков зависимости емкости или индуктивности от температуры в реальном масштабе времени и т.п.)
Измерение дальности до объекта называется по другому локацией — совокупностью методов обнаружения, измерения координат, а также распознавания формы удалённых объектов с помощью использования акустических волн и электромагнитных волн.
- для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
Третье поколение систем коммутации — квазиэлектронные и электронные телефонные станции. Квазиэлектронные станции устранили ряд недостатков присущих АТС ДШ и АТС КУ и используются во многих странах мира. Создание же полностью электронных систем стало возможным лишь после применения в них принципа коммутации информации в цифровом виде (импульсно кодовая модуляция).
Цель создания нового поколения коммутационной техники на основе цифровых систем передачи (ЦСП) заключается в повышении гибкости и экономичности системы, сокращение затрат и трудоемкости эксплуатации, упрощение и удешевление в производстве, а так же предоставление новых видов услуг абонентам.
Список источников информации
1. Волович Г.И. Схемотехника аналоговых и аналогово-цифровых электронных устройств.– М.: Издательский дом «Додэка-XXI», 2005.– 528 с.
2. Цифровые интегральные микросхемы: Справочник / П. П. Мальцев и др. – М.: Радио и связь, 1994. – 240 с.
3. Л.Л. Роткоп; Ю.Е. Спокойный; «Обеспечение тепловых режимов при конструировании РЭА» Москва «Советское радио», 1978;
4. Браун М. Источники питания. Расчет и конструирование.: Пер. с англ. — К.: «МК-Пресс», 2007. — 288 е., ил.
5. Быстродействующие интегральные микросхемы и измерение их параметров/А.-Й. К Марцинкявичюс, Э.-А. К. Багданскис, Р.Л.Пошюнас и др.; Под. ред. А.-Й. К Марцинкявичюса, Э.-А. К. Багданскиса.– М.: Радио и связь, 1988.-224 с.; ил.
6. Интегральные микросхемы: Микросхемы для линейных источников питания и их применение. Издание второе, исправленное и дополненное – М. ДОДЭКА, 1998 г., 400 с.
7. .Кучеров, Д.П. Источники питания системных блоков ПК/ Д.П. Кучеров. – С-Питербург.: Наука и техника, 2002.
8. Хоровиц, П.А. Искуство схемотехники-1/ П.А. Хоровиц, У.Н. Хилл. – М.: Мир, 1999.
9. Хоровиц, П.А. Искуство схемотехники-2/ П.А. Хоровиц, У.Н. Хилл. – М.: Мир, 2000.
10. 8.Иваченко, И.В. Микросхемы для бытовой радиоаппаратуры/ И.В. Иваченко, В.А. Телец. – М.: Радио и связь, 1996.
11. Типовые нормы времени на разработку конструкторской документации. – 2-е издание., доп. – М.: Экономика, 1991.– 44 с.
12. Баскаков С. И. Радиотехнические цепи и сигналы. –М.: Высшая школа, 1988. – 448 с.
13. Безопасность жизнедеятельности: Методические указания к самостоятельным работам / Сердюк В.С., Игнатович И.А., Кирьянова Е.Н., Стишенко Л.Г. – Омск: ОмГТУ, 2007.
14. В.Г. Костиков, Е.М. Парфенов, В.А. Шахнов «Источники электропитания электронных средств» Москва, Горячая линия – Телеком 2001г.
15. Измерения в электронике: справочник / В.А. Кузнецов [и др.]; под ред. В.А. Кузнецова. – М.: Энергоатомиздат, 1987. – 512 с.: ил.
16. Полупроводниковые приборы. Диоды высокочастотные, импульсные, оптоэлектронные приборы: справочник / А.Б. Гитцевич [и др.]; под ред. А.В. Голомедова. – 2-е изд. стереотип. – М.: КУбК-а, 1997. – 592 с.: ил.
17. Шило, В.Л. Популярные цифровые микросхемы: справочник / В.Л. Шило. – М.: Радио и связь, 1987. – 352 с.: ил.
18. «Астра-9» Руководство по эксплуатации ЗАО НТЦ «ТЕКО». Казань.2008 г.
19. Техническое описание на датчики влажности воздуха серии ВА 100/101/102 ЗАО «НТЦ ИИТ» Юбилейный. 2009 г.
20. Техническое описание на датчики температуры воздуха серии ТА 100/101/102ЗАО «НТЦ ИИТ» Юбилейный. 2009 г.
21. Техническое описание на датчики температуры воздуха серии ТВ 100/101/102ЗАО «НТЦ ИИТ» Юбилейный. 2009 г.
22. Техническое описание на датчики видимого света серии ОС 100М ЗАО «НТЦ ИИТ» Юбилейный. 2009 г.
23. ГОСТ Р 50923-96 «Дисплеи. Рабочее место оператора. Общие эргономические требования и требования к производственной среде. Методы измерения».
24. ГОСТ 12.0.003-74* «ССБТ. Опасные и вредные производственные факторы. Классификация»
25. ГОСТ 12.1.038-82* «Предельно допустимые значения напряжений прикосновения и токов»
26. ГОСТ Р 50948-2001 «Средства отображения информации индивидуального пользования. Общие эргономические требования и требования безопасности»
27. ГОСТ Р 50949-2001 «Средства отображения информации индивидуального пользования. Методы измерения и оценки эргономических параметров и параметров безопасности»:
28. ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования»
29. СанПиН 2.2.2/2.5.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы»
30. СНиП 23-05-95 «Естественное и искусственное освещение»
31. СанПиН 2.2.5.548-96 «Гигиенические требования к микроклимату производственных помещений»
32. СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование».
33. ГН 2.2.6.009-94 «Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны».
34. СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки»
35. СН 181-170 «Указания по проектированию цветовой отделки интерьеров производственных зданий промышленных предприятий».
36. НПБ 88-2001 «Установки пожаротушения и сигнализации. Нормы и правила проектирования»
37. НПБ 104-03 «Системы оповещения и управления эвакуацией людей при пожарах в зданиях и сооружениях»
список литературы