Пример готовой дипломной работы по предмету: Химические технологии
РЕФЕРАТ 2
ВВЕДЕНИЕ 6
1 ПАТЕНТНАЯ ПРОРАБОТКА ТЕМЫ 8
2 АНАЛИТИЧЕСКИЙ ОБЗОР 12
2.1 Историческая справка о производстве смазочных материалов 12
2.2 Химизм и механизм реакций, лежащих в основе процесса 18
2.3 Физико-химические основы процесса 20
2.3.1 Общая характеристика процесса перемешивания 20
2.3.2 Механическое перемешивание 22
2.3.3 Барботажное перемешивание 25
2.4 Растворители процесса 26
2.5 Сырьевая база процесса 29
2.6 Утилизация побочных продуктов 33
2.7 Влияние различных факторов на выход и качество основного продукта, на протекание побочных реакции. 35
3 ВЫБОР МЕТОДА ПРОИЗВОДСТВА 38
3.1 Существующие схемы производства Эмульсола ЭКС-А 38
3.2 Направления модернизации производства Эмульсола ЭКС-А 39
4 ОБОСНОВАНИЕ МЕСТА СТРОИТЕЛЬСТВА 40
4.1 Поиск оптимальных участков местности 40
4.2 Наличие сырьевой базы и инфраструктуры 41
4.3 Климатические и географические условия 42
5 ВЫБОР СЫРЬЯ И ХАРАКТЕРИСТИКА ГОТОВОЙ ПРОДУКЦИИ 44
5.1 Сравнительный технико-экономический анализ сырья 44
5.2 Требования к качеству сырья и готовой продукции 46
6 РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ И ЕЕ ОПИСАНИЕ 50
6.1 Последовательность технологических операций 50
6.2 Характеристика ключевых процессов и оборудования 51
6.2.1 Прием сырья 51
6.2.3 Приготовление эмульсола ЭКС-А 51
6.2.4 Отгрузка готовой продукции 52
6.3 Составление технологической схемы 54
7 МАТЕРИАЛЬНЫЕ БАЛАНСЫ 56
7.1 Постадийный расчет материального баланса 56
7.2 Общий материальный баланс по процессу 59
8 ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ 60
8.1 Выбор типа и конструкции основного оборудования 60
8.2 Расчет теплового баланса 64
9 МЕХАНИЧЕСКИЕ РАСЧЕТЫ И ПОДБОР ОСНОВНОГО И ВСПОМОГАТЕЛЬНОГО ОБОРУДОВАНИЯ 67
9.1 Компрессор К-30 и смеситель Р-20 67
9.2 Расчет резервуара Р-12 73
9.3 Расчет резервуара Р-15 75
9.4 Расчет резервуара Р-18 77
9.5 Расчет насосов ШН-2 и ШН-5 (Н-2 и Н-5) 79
9.6 Расчет трубопроводной обвязки 80
10 АНАЛИТИЧЕСКИЙ КОНТРОЛЬ ПРОИЗВОДСТВА 82
10.1 Важность аналитического контроля производства 82
10.2 Входной контроль сырья и компонентов 82
10.3 Контроль готового эмульсола 83
11 КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И СРЕДСТВА АВТОМАТИЗАЦИИ 85
11.1 Основные контролируемые параметры 85
11.2 Описание схемы автоматизации 86
11.3 Спецификация средств автоматизации 86
12 ТЕХНИКА БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНЫЕ МЕРОПРИЯТИЯ 88
12.1 Опасные и вредные производственные факторы 88
12.2 Мероприятия по обеспечению безопасности труда и пожарной безопасности производства 90
12.3 Правила безопасной работы 96
12.4 Защита окружающей среды 101
13 СТРОИТЕЛЬНАЯ ЧАСТЬ 104
13.1 Исходные данные по строительной части проекта 104
13.2 Производственный режим установки 104
13.3 Архитектурно-конструкторское решение здания 105
13.4 Административно-бытовые помещения 106
13.5 Основные экономические показатели 107
14 ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТА 108
14.1 Организация производственного процесса 108
14.2 Расчет капитальных вложений в основные фонды 108
14.2.1 Расчет сметной стоимости капитальных объектов 108
14.2.2 Расчет сметной стоимости оборудования 110
14.2.3 Расчет годовой потребности в ресурсах 110
14.3 Расчет фонда рабочего времени и заработной платы 114
14.4 Технико-экономические показатели производства 116
15 СТАНДАРТИЗАЦИЯ 118
ЗАКЛЮЧЕНИЕ 119
БИБЛИОГРАФИЯ (ПРИЛОЖЕНИЕ А) 120
РЕЗУЛЬТАТЫ ПАТЕНТНОГО ПОИСКА (ПРИЛОЖЕНИЕ Б) 125
Содержание
Выдержка из текста
Актуальность темы данного дипломного проекта заключается в том, что в последнее десятилетие в России и странах СНГ произошел существенный рост объемов возводимого жилья и прочих строительных конструкций. По этой причине резко возросла необходимость в дешевых и, главное, доступных расходных материалах, к которым, в свою очередь, относится Эмульсол ЭКС-А.
Отпаренная вода выводится с блока по следующим направлениям: на границу установки для подачи отпаренной воды по МЦК для повторного использования на установках в качестве промывочной воды или в систему производственной канализации. Содержание сероводорода в отпаренной воде до 10 ррт, содержание аммиака до 25 ррт, рН воды 6,5-8,5.
К существующим недостаткам ПГУ можно отнести допускаемые разработчи-ками технические ошибки при расчетах. Так, по результатам тепловых испытаний оборудования блока ПГУ-450Т Калининградской ТЭЦ-2 установлено, что из-за не-достаточной паропроизводительности контура высокого давления котла-утилизатора не достигнута расчетная мощность в 151,4 МВт паровой турбины, а полученное зна-чение КПД котла-утилизатора на номинальном режиме на более 6 и до 6,5 % ниже данных завода-изготовителя [2].
Уменьшенная паропроизводительность контура вы-сокого давления и увеличенная разность температур газового потока приводят к по-вышению перегрева на величину от 9 до 11 С по сравнению с расчетным значением.
Электроустановки потребителей электроэнергии имеют свои специфические особенности; к ним предъявляются особые требования: надежность питания, качество электроэнергии, резервирование защита отдельных элементов и защита отдельных элементов и др. при проектировании, сооружений и эксплуатации систем электроснабжения примышленных предприятий необходимо правильно в технико-экономическом аспекте осуществлять выбор напряжений, определить электрические нагрузки, выбирать тип, число и мощность трансформаторных подстанций, виды их защиты, системы компенсации реактивной мощности и способы регулирования напряжений. Это должно решаться с учетом совершенствования технологических процессов производства, роста мощностей отдельных электроприёмников и особенностей каждого предприятия, цеха, установки, повышения качества и эффективности их работы.
А. Исходные данные к работе: технологический регламент установки, служебные инструкции, функциональные схемы, инструкции по эксплуатации приборов, нормативно-правовая документация, ГОСТы. План-схема производства Мономеров
Однако, по мере того как потребность в этилене росла, его производство стало все больше определяться пиролизом нефтяных фракций (легкого бензина, нафты, газойля) и попутного газа. В 1920 году «Union Carbide» и «Carbon Co» построили пилотную установку пиролиза этана и пропана, они же впоследствии разработали и пиролиз газойля.Существующие мощности установок пиролиза составляют 113,0 млн т/год по этилену или почти 100% мирового производства и 38,6 млн т/год по пропилену или более
67. мирового производства.
Задача технологической практики – закрепление и углубление теоретических знаний по способам получения низших олефинов путём практического изучения технологического процесса и оборудования установки газоразделения ПАО «Казаньоргсинтез», а также средств механизации и автоматизации производства, вопросов безопасности жизнедеятельности и охраны окружающей среды согласно перечню вопросов, приведенных в методических указаниях к составлению отчетов по производственной практике по кафедре ХТПНГ.
В химической промышленности применяются в основном непрерывно действующие выпарные установки. Лишь в производствах малого масштаба, а также при выпаривании растворов до высоких конечных концентраций иногда используют выпарные аппараты периодического действия. Концентрация раствора в таком аппарате приближается к конечной лишь в конечный период процесса. Поэтому средний коэффициент теплопередачи здесь может быть несколько выше, чем в непрерывно действующем аппарате, где концентрация раствора ближе к конечной в течение всего процесса выпаривания.
Интерес специалистов к процессу образования аммиака из элементов основан на том, что при этом получается простой результат с помощью необычных средств. Интерес широких кругов объясняется тем, что синтез аммиака, осуществленный в крупном масштабе, представляет собой действительный путь к удовлетворению важных народнохозяйственных нужд. Эта практическая польза не была предвзятой целью моей работы. Очень большое значение для правильного проведения процесса синтеза аммиака
БИБЛИОГРАФИЯ (ПРИЛОЖЕНИЕ А)
1. Мосталыгина Л.В., Костин А.В., Камаев Д.Н. Патент RU 2360796. Способ получения эмульсола для смазки металлических форм при изготовлении бетонных и железобетонных изделий и эмульсол, полученный этим способом. – М: Роспатент, 2007. – 4 с.
2. Пегеева М.А.,Тарасова Е.В., Старков А.Ф., Денисова Ж.Е., Клементьева В.В. Патент RU 2375418. Эмульсол АТМ-СОЖ-2 для приготовления смазочно– охлаждающей жидкости. – М: Роспатент, 2008. – 8 с.
3. Литвиненко А.Н., Родионов Н.С., Климов Е.С. Патент RU 2426772. Эмульсол для приготовления водорастворимой смазочно-охлаждающей жидкости. – М: Роспатент, 2009. – 12 с.
4. Резниченко И.Д., Бочаров А.П., Левина Л.А., Лёвушкина Л.В. Патент RU 2466181. Эмульсол для смазки металлических форм при изготовлении бетонных и железобетонных изделий. – М: Роспатент, 2010. – 10 с.
5. Мустафаев Р.Ф., Салявина Н.П., Алексеев Н.С., Иванов С.В., Капорин В.А. Патент RU 2501847. Смазочно-охлаждающая жидкость для шлифования плазменных покрытий на никелевой основе. – М: Роспатент, 2012. – 9 с.
6. Заяшников Е.Н. Проблема совершенствования технологии производства и улучшения качества нефтяных масел. Сборник трудов. — М.: Нефть и газ, 1996. — 198 с.
7. Сакулевич Ф.Ю., Скворчевский Н.Я. Роль смазочно-охлаждающих жидкостей при магнитно-абразивной обработке. — Мн.: БелНИИНТИ, 1981. – 52 с.
8. Анисимов И.Г., Бадыштова К.М., Бнатов С.А. и др. Топлива, смазочные материалы, технические жидкости. Ассортимент и применение. Справочник / 2-е изд., перераб. и доп. — Под ред. В.М. Школьникова. – М.: Техинформ, 1999. — 596 с.
9. Агаев Г.А., Настека В.И., Сеидов З.Д. Окислительные процессы очистки сернистых природных газов и углеводородных конденсатов. – М.: Недра, 1996. — 301 с.
10. Новиков А.А. Физико-химические основы процессов транспорта и хранения нефти и газа: учебное пособие / А.А. Новиков, Н.В. Чухарева; Томский политехнический университет. — Томск: Изд-во ТПУ, 2005. — 111 с.
11. Остриков В.В., Нагорнов С.А., Клейменов О.А. и др. Топливо, смазочные материалы и технические жидкости/ Учебное пособие. — Тамбов: Изд-во Тамб. гос. техн. ун-та, 2008. — 304 с.
12. Золотухин В.А. Глубокая переработка тяжелой нефти и нефтяных остатков. — [Электронный ресурс]
- Режим доступа: www.ngfr.ru/article.html ?106.
13. Покровская С.В. Технология переработки нефти. Производство нефтяных масел. Учеб.-метод. комплекс. — Новополоцк: ПГУ, 2008. — 320 с.
14. Рабинович Г.Г., Рябых П.М., Хоряков П.А. и др. Расчеты основных процессов и аппаратов нефтепереработки. Справочник / Под редакцией Е.Н. Судакова. — 3-е изд., перераб. и доп. — М.: Химия, 1979. — 568 с.
15. Кутепов A.M. и др. Теория химико-технологических процессов органического синтеза: Учеб. для техн. вузов/A.M. Кутепов, Т.И. Бондарева, М.Г. Беренгартен — М.: Высш. шк., 2005. – 520 с.
16. Технологический регламент на производство Эмульсола ЭКС – А ТУ 38.5901229-90. – Казань: Масла и смазки, 2003. – 16 с.
17. Постановление Кабинета Министров Республики Татарстан от 24 февраля 1993 г. N
7. «О мерах по улучшению организации сбора и использования отработанных нефтепродуктов».
18. Сервис Яндекс-карты. — [Электронный ресурс]
- Режим доступа: http://maps.yandex.ru/?ol=biz&oid=1049192174&ll=49.097357%2C55.726604&spn=0.022016%2C0.006321&z=16&l=sat%2Cstv
19. Климатическая характеристика Казани [Электронный ресурс]
- Режим доступа: http://www.tatarmeteo.ru/ru/meteorologiya-i-klimat/klimaticheskaya-harakteristika-RT.html
20. Климат Казани [Электронный ресурс]
- Режим доступа: http://ru.wikipedia.org/wiki/Климат_Казани
21. ТУ 38.601-07-17-93. Экстракт нефтяной. Технические условия.
22. ТУ 10-04-02-49-89. Смола госсиполовая. Технические условия.
23. ГОСТ 21046-86 Нефтепродукты отработанные. Общие технические условия.
24. Отработанное масло (отработка) и смазки. Закупочные цены. [Электронный ресурс]
- Режим доступа: http://www.intergreen.ru/docs/recycling_oil 1.html
25. ТУ 38.5901229-90. Эмульсол ЭКС-А. Технические условия.
26. Формовочные масла и эмульсолы [Электронный ресурс]
- Режим доступа: http://www.volganefteprodukt.ru/formovochnye_masla_i_emulsoly
27. Постановление КМ РТ от 24.02.1993 n
7. «О мерах по улучшению организации сбора и использования отработанных нефтепродуктов» [Электронный ресурс]
- Режим доступа: http://tatarstan.news-city.info/docs/sistemaa/dok_legmhb.htm
28. Резервуары вертикальные стальные [Электронный ресурс]
- Режим доступа: http://vzrto.com/catalog/rezervuary-vertikalnye-stalnye/
29. Насосы шестеренчатые нефтяные [Электронный ресурс]
- Режим доступа: http://www.nprom.ru/info.php?id=798&name=%D8+80-2%2C5-37%2C5-2%2C5+%C1
30. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Изд. 2-е, испр. и доп. — Л.: Химия, 1978. — 420 с.
31. Краткий справочник физико-химических величин. Под редакцией К.П. Мищенко и А.А. Равделя, СПб.: Химия, 2008. – 200 с.
32. Фролов В.Ф., Флисюк О.М., Романков П.Г. Массообменные процессы химической технологии: Учебное пособие. – М.: Химиздат, 2011. — 439 с.
33. Павлов К.Ф., Романков П.Г, Малков М.П., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. 4-е изд., перераб. и доп. М.: Госхимиздат, 1982. — 406 с.
34. Поникаров И.И., Перелыгин О.А. и др. Машины и аппараты химических производств. Учебник для вузов по специальности «Машины и аппараты химических производств и предприятий строительных материалов»/ И.И. Поникаров, О. А. Перелыгин, В. Н. Доронин, М. Г. Гайнуллин. — М.: Машиностроение, 1989. — 368 с.
35. Дытнерский Ю.И. Процессы и аппараты химической технологии. Ч.1. Теоретические основы процессов химической технологии. Учебник для вузов. Изд. 2-е. М.: Химия,1995. — 400с.
36. Воробьёва, Г. Я. Коррозионная стойкость материалов в агрессивных средах химических производств. — М.: Химия, 1975. — 816 с.
37. Теоретическая производительность шестеренного насоса системы жидкой смазки [Электронный ресурс]
- Режим доступа: http://for-engineer.info/lubricate/teoreticheskaya-proizvoditelnost-shesterennogo-nasosa-sistemy-zhidkoj-smazki-chast-1.html
38. Лащинский А.А., Толчинский А.Р. Основы конструирования и расчета химической аппаратуры: Справочник. Издание 2-е, переработанное и дополненное. — Л.: Машиностроение, 1970. — 752 с.
39. Рудин М. Г., Драбкин А. Е. Краткий справочник нефтепереработчика. — Л.: Химия, 1980. — 328 с.
40. ГОСТ 11362-96 Нефтепродукты и смазочные материалы. Число нейтрализации. Метод потенциометрического титрования.
41. Плановский А.Н, Николаев И.П. Процессы и аппараты химической и нефтехимической технологии. 5-изд. — М.:Химия, 1987. — 847 с.
42. ГОСТ 2517-85, Нефть и нефтепродукты. Методы отбора проб.
43. ГОСТ 8.002-71. Организация и порядок проведения и проверки, ревизии и экспертизы средств измерений.
44. ГОСТ 1510-84. Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение.
45. Харазов В. Г. Аналоговые и цифровые регуляторы и исполнительные механизмы в системах автоматизации технологических процессовю Методические указания. — СПб, 2002. – 241с.
46. Об основах охраны труда в Российской Федерации (Федеральный закон № 181-ФЗ от 17.07.99; в ред. ФЗ № 53-ФЗ от 20.05.02, № 15-ФЗ от 10.01.03, № 45-ФЗ от 09.05.05).
47. ГОСТ 12.1.005-88. Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны. – М.: Госстандарт СССР, 1988.
48. Положение об обеспечении безопасности производственного оборудования. ПОТ РО — 14000 — 002 – 98. М., 1998. – 25 с.
49. Справочник по пожарной безопасности и противопожарной защите на предприятиях химической, нефтеперерабатывающей и нефтехимической промышленности. — М.: Химия, 1975. — 455 с.
50. Косинцев В. И., Миронов В. М., Сутягин В. М. Основы проектирования химических производств. 2-е изд. М.: Академкнига, 2010. – 371 с.
51. Косниская Л.В. Кочеров Н.П. Технико-экономические расчеты в дипломном проекте. Методическое пособие. – СПб.: СПбГТИ(ТУ), 2002. – 33 с.
52. Ставка ЕСН [Электронный ресурс]
- Режим доступа: http://www.audit-it.ru/inform/account/19740.html
список литературы