Содержание

Уникальные физико-механические свойства углеродного волокна (УВ) обусловлены особенностями его микроструктуры, в том числе размерами областей когерентного рассеяния (ОКР) и высокой степенью упорядоченности материала, формирующегося в процессе термостабилизации (200—300 °С) и высокотемпературной (-1500—3000 °С) обработки исходного волокна на основе полиакрилонитрила (ПАН-волокна) [1—5]. В литературе достаточно подробно рассмотрено влияние режимов термостабилизации и высокотемпературной обработки на тепловые эффекты, удаление летучих, усадочные явления и физико-механические свойства образующегося нанодисперс-ного волокнистого материала [2—4]. Однако закономерности структурных преобразований паракристал-лического полиакрилонитрила в термодинамически неравновесную нанодисперсную структуру термоста-билизированного волокна, а затем в структуру углеродного волокна в условиях высокоскоростного нагрева недостаточно изучены. В работе рассмотрены закономерности преобразования материала ПАН-волокна, полученного по диметилсульфоксидной технологии, в углеродное волокно

Выдержка из текста

Уникальные физико-механические свойства углеродного волокна (УВ) обусловлены особенностями его микроструктуры, в том числе размерами областей когерентного рассеяния (ОКР) и высокой степенью упорядоченности материала, формирующегося в процессе термостабилизации (200—300 °С) и высокотемпературной (-1500—3000 °С) обработки исходного волокна на основе полиакрилонитрила (ПАН-волокна) [1—5]. В литературе достаточно подробно рассмотрено влияние режимов термостабилизации и высокотемпературной обработки на тепловые эффекты, удаление летучих, усадочные явления и физико-механические свойства образующегося нанодисперс-ного волокнистого материала [2—4]. Однако закономерности структурных преобразований паракристал-лического полиакрилонитрила в термодинамически неравновесную нанодисперсную структуру термоста-билизированного волокна, а затем в структуру углеродного волокна в условиях высокоскоростного нагрева недостаточно изучены. В работе рассмотрены закономерности преобразования материала ПАН-волокна, полученного по диметилсульфоксидной технологии, в углеродное волокно

Список использованной литературы

Уникальные физико-механические свойства углеродного волокна (УВ) обусловлены особенностями его микроструктуры, в том числе размерами областей когерентного рассеяния (ОКР) и высокой степенью упорядоченности материала, формирующегося в процессе термостабилизации (200—300 °С) и высокотемпературной (-1500—3000 °С) обработки исходного волокна на основе полиакрилонитрила (ПАН-волокна) [1—5]. В литературе достаточно подробно рассмотрено влияние режимов термостабилизации и высокотемпературной обработки на тепловые эффекты, удаление летучих, усадочные явления и физико-механические свойства образующегося нанодисперс-ного волокнистого материала [2—4]. Однако закономерности структурных преобразований паракристал-лического полиакрилонитрила в термодинамически неравновесную нанодисперсную структуру термоста-билизированного волокна, а затем в структуру углеродного волокна в условиях высокоскоростного нагрева недостаточно изучены. В работе рассмотрены закономерности преобразования материала ПАН-волокна, полученного по диметилсульфоксидной технологии, в углеродное волокно

Похожие записи