Пример готовой контрольной работы по предмету: Высшая математика
Содержание
Двойственный симплекс-метод решения задачи ЛП
Градиентные методы
Выдержка из текста
Двойственный симплекс-метод решения задачи ЛП
Двойственный симплекс-метод, как и симплекс-метод, используется при нахождении решения задачи линейного программирования, записанной в форме основной задачи, для которой среди векторов , составленных из коэффициентов при неизвестных в системе уравнений, имеется m единичных. Вместе с тем двойственный симплекс–метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами (при решении задачи симплексным методом эти числа предполагались неотрицательными).
Такую задачу и рассмотрим теперь, предварительно предположив, что единичными являются векторы т. е. рассмотрим задачу, состоящую в определении максимального значения функции
(54)
при условиях
(55)
(56)
где
и среди чисел имеются отрицательные.
В данном случае есть решение системы линейных уравнений (55).
Однако это решение не является планом задачи (54) – (56), так как среди его компонент имеются отрицательные числа.
Поскольку векторы – единичные, каждый из векторов можно представить в виде линейной комбинации данных векторов, причем коэффициентами разложения векторов по векторам служат числа Таким образом, можно найти
Определение 14.
Решение системы линейных уравнений (55), определяемое базисом , называется псевдопланом задачи (54) – (56), если для любого
Теорема 11.
Если в псевдоплане , определяемом базисом , есть хотя бы одно отрицательное число такое, что все , то задача (54) – (56) вообще не имеет планов.
Теорема 12.
Если в псевдоплане , определяемом базисом , имеются отрицательные числа такие, что для любого из них существуют числа aij
Сформулированные теоремы дают основание для построения алгоритма двойственного симплекс-метода.
Итак, продолжим рассмотрение задачи (54) – (56).
Пусть – псевдоплан этой задачи. На основе исходных данных составляют симплекс-таблицу (табл. 15), в которой некоторые элементы столбца вектора являются отрицательными числами. Если таких чисел нет, то в симплекс-таблице записан оптимальный план задачи (54)–(56), поскольку, по предположению, все . Поэтому для определения оптимального плана задачи при условии, что он существует, следует произвести упорядоченный переход от одной симплекс–таблицы к другой до тех пор, пока из столбца вектора не будут исключены отрицательные элементы. При этом все время должны оставаться неотрицательными все элементы (т +1)–й строки, т.е. для любого
Таким образом, после составления симплекс-таблицы проверяют, имеются ли в столбце вектора отрицательные числа. Если их нет, то найден оптимальный план исходной задачи. Если же они имеются (что мы и предполагаем), то выбирают наибольшее по абсолютной величине отрицательное число. В том случае, когда таких чисел несколько, берут какое–нибудь одно из них: пусть это число bl. Выбор этого числа определяет вектор, исключаемый из базиса, т. е. в данном случае из базиса выводится вектор Pl. Чтобы определить, какой вектор следует ввести в базис, находим , где
Пусть это минимальное значение принимается при , тогда в базис вводят вектор Рr. Число является разрешающим элементов. Переход к новой симплекс–таблице производят по обычным правилам симплексного метода. Итерационный процесс продолжают до тех пор, пока в столбце вектора Р 0 не будет больше отрицательных чисел. При этом находят оптимальный план исходной задачи, а следовательно, и двойственной. Если на некотором шаге окажется, что в i–й строке симплекс–таблицы (табл. 15) в столбце вектора Р 0 стоит отрицательное число bi, а среди остальных элементов этой строки нет отрицательных, то исходная задача не имеет решения.
Таким образом, отыскание решения задачи (54) – (56) двойственным симплекс-методом включает следующие этапы:
1. Находят псевдоплан задачи.
2. Проверяют этот псевдоплан на оптимальность. Если псевдоплан оптимален, то найдено решение задачи. В противном случае либо устанавливают неразрешимость задачи, либо переходят к новому псевдоплану.
3. Выбирают разрешающую строку с помощью определения наибольшего по абсолютной величине отрицательного числа столбца вектора Р 0 и разрешающий столбец с помощью нахождения наименьшего по абсолютной величине отношения элементов (m+1)–и строки к соответствующим отрицательным элементам разрешающей строки.
4. Находят новый псевдоплан и повторяют все действия начиная с этапа 2.