Содержание

Вариант 4

Задания:

1. Найдите производную функции

2. Найдите тангенс угла наклона касательной к графику функции

3. Найдите точки экстремума функции

4. Найдите промежутки убывания (возрастания) функции

5. Найдите наименьшее и наибольшее значения функции на отрезке .

6. Вычислите интеграл

7. Найдите функцию, производная которой , если при значение функции равно 28.

8. Вычислить:

9. Треугольник АВС прямоугольный, равнобедренный, с прямым углом С и гипотенузой 8 см. Отрезок СМ перпендикулярен плоскости АВС и равен 3 см. Найдите расстояние от точки М до прямой АВ.

10.Найдите угол наклона к оси абсцисс вектора , если А(-3,-3) и В(2,1).

11. В правильной треугольной пирамиде боковое ребро 10 см, а сторона основания 12 см. Найдите площадь полной поверхности пирамиды.

12. Диагональ осевого сечения цилиндра 8 см наклонена к плоскости основания цилиндра под углом 30 . Найдите объем цилиндра.

Выдержка из текста

Вариант №4

1. Найдите производную функции:

а) y=2x^(-3)-3sinx+5cosx;

б) y=(x^2+1)/(x+1).

Решение:

а) ;

б)

.

2. Найдите тангенс угла наклона касательной к графику функции:

в точке .

Решение:

тангенс угла наклона касательной к графику функции в заданной точке есть значение производной функции в этой точке, поэтому находим производную:

и тогда , где — угол наклона касательной к графику функции .

3. Найдите точки экстремума функции:

.

Решение:

найдем сначала стационарные точки функции, для этого решим уравнение .

Находим производную функции: , тогда

Точек, в которых функция не существует нет, т.к. область определения функции , тогда критические точки: и . Нанесем точки на ось абсцисс и установим знак производной на полученных интервалах:

Т.к. на функция убывает, а на возрастает, то в точке экстремум, а именно минимум и . И т.к. на функция возрастает, а на убывает, то в точке тоже экстремум, а именно максимум и .

4. Найдите промежутки убывания (возрастания) функции:

.

Решение:

найдем сначала стационарные точки:

Т.к. функция определена на всей числовой оси R, то критические точки: .

Нанесем точки на ось абсцисс и установим знак производной на полученных интрвалах:

Т.к. на производная функции , то следовательно, на функция убывает, а на — , следовательно, на функция возрастает.

Похожие записи