Содержание
Задание 1 3
Задание 2 3
Задание 3 4
Задание 4 5
Задание 5 7
Список использованных источников 9
Выдержка из текста
—
Задача 1. На заданном множестве точек плоскости Q определены предикаты P1(x), P2(x), P(x). Областью истинности предиката P1(x) является множество Р1, областью истинности предиката P2(x) – множество Р2, областью истинности предиката Р(х) – множество Р, заштрихованная часть области Q.
a) Используя операции над множествами, записать формулу получения множества Р.
б) Используя логические операции, записать формулу предиката P(x).
Задача 2. Дано множество M={a, b}. Предикат P(x,y), где x M, y M, задан следующей таблицей.
x y P(x,y)
a a 0
a b 1
b a 1
b b 1
Определить значение истинности высказывания (с объяснением)
y x P(x, y)
Задача 3. Выписать все элементы отношений и . Исследовать свойства отношения и представить его в виде ориентированного графа и координатной диаграммы.
X = {2, 4, 16, 22}, R = {: x / y четно}
Задача 4. Для орграфа, представленного следующей матрицей инциденций, найти матрицу смежности, нарисовать диаграмму графа и определить будет ли он связным, сильно связным или несвязным.
0 1 1 0 0
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
0 0 1 0 0
Задача 5. По заданной матрице расстояний графа G найти величину минимального пути и сам путь от вершины s=х1 до вершины t=х6, а затем величину максимального пути и сам путь между теми же вершинами.
Список использованной литературы
1. Аляев Ю.А. Тюрин С.Ф. Дискретная математика и математическая логика. – М.: Финансы и статистика, 2006. – 368 с.
2. Бочаров В.А., Маркин В.И. «Основы логики: Учебник для вузов». – М.: Инфра-М, 2002.
3. Войшвенко Е.К., Дегтярев М.Г. «Логика: Учебник для вузов». – М.: Владос-пресс, 2001.
4. Германова А.Д. «Логика: Словарь и задачник: Учебное пособие для студентов вузов». – М.: Владос-пресс, 1998.
5. Гуц А.К. Математическая лоrика и теория алrоритмов. – Омск: Издательство Наследие. Диалог-Сибирь, 2003. – 108 с.
6. Иванов Е.А. «Логика: Учебник для юридических вузов». – М.: Бек, 1996.
7. Ивин А.А. «Логика. Учебник для гуманитарных факультетов». – М.: Фаир-пресс, 1999.
8. Логика. Учебное пособие для студентов вузов. – Ростов-на-Дону. Изд. «Феникс», 1996.
9. Марков А. А., Нагорный Н. М. Теория алгорифмов, изд. 2. – М.: ФАЗИС, 1996.
10. Марков А. А. Элементы математической логики. – М.: Изд-во МГУ, 1984.
11. Светлов В.А. Логика: Учебник. – М.: Логос, 2012.
12. Свободная онлайн-энциклопедия Википедия [Электронный ресурс]. – Режим доступа: http://ru.wikipedia.org. – (Дата обращения: 21.05.2016).
13. Сковиков А.К. Логика: учебник и практикум. Серия: Бакалавр. Базовый курс. – М.: Юрайт, 2014.
14. Судоплатов С.В., Овчинникова Б.В. Математическая логика и теория алгоритмов: Учебник – М.: ИНФРА-М; Новосибирск: Изд-во НГТУ, 2004. – 224 с. – (Высшее образование).
15. В.А. Успенский, А.Л. Семёнов Теория алгоритмов: основные открытия и приложения – М., Наука, 1987, 288 c.