Содержание
1. История становления классической математической логики
История логики охватывает около двух с половиной тысячелетий. Из других наук раньше формальной логики стали складываться, пожалуй, только философия и математика.
В длинной и богатой событиями истории становления логики отчетливо выделяются два основных этапа. Первый из них — от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй — с этого времени до наших дней.
На первом этапе, обычно называемом традиционной логикой, формальная логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало чем отличались от проблем, поставленных еще Аристотелем. Это дало повод немецкому философу И. Канту (1724—1804) в свое время прийти к выводу, что формальная логика является завершенной наукой, не продвинувшейся со времени Аристотеля ни на один шаг.
Кант не заметил, что еще с XVII века стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.
Эта идея связана главным образом с именем немецкого философа и математика Г. Лейбница (1646—1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: «Будем вычислять».
Выдержка из текста
ВВЕДЕНИЕ
Математическая логика — раздел математики, изучающий доказательства и вопросы оснований математики. Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет.
Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода, с использованием языка математики.
Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.
Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.
Список использованной литературы
СПИСОК ЛИТЕРАТУРЫ:
1.Анисимов А.М. Современная логика. – Москва. 2002 г.
2. Гетманова А.Д. Логика. – Москва: Добросвет, 2002 г.
3. Иванов А. Логика. Москва, 2002 г.
4.Ивлев Ю.В. Логика. Москва: Проспект, 2002 г.
5.Кириллов В.И. Старченко А.А. Логика. – Москва: Юрист, 2002 г.