Математические модели в экономическом анализе. Вариант 6

Содержание

Задача 2.Транспортная задача

На трёх хлебокомбинатах ежедневно производится 46+N1, 34+N2, 35+ N1+N2 т муки. Эта мука потребляется четырьмя хлебозаводами, ежедневные потребности которых равны соответственно 40+ N2, 30+ N1, 30+ N1, 20+ N2 т. Тарифы перевозок 1 т муки с хлебокомбинатов к каждому из хлебозаводов задаются матрицей:

С=(■(3&5&[email protected]&1&[email protected]&5&8) ■([email protected]@3)).

Составить такой план доставки муки, при котором общая стоимость перевозок является минимальной.

N1 = 6, N2 = 6.

Задача 3. Задача СМО.

Использовать методы теории массового обслуживания для исследования предлагаемой хозяйственной ситуации. При моделировании предполагается, что поток требований на обслуживание является простейшим (пуассоновским), а продолжительность обслуживания распределена по экспоненциальному (показательному) закону. Задачу следует решить с помощью средств MS Excel.

В бухгалтерии организации в определенные дни непосредственно с сотрудниками работают два бухгалтера. Если сотрудник заходит в бухгалтерию для оформления документов (доверенностей, авансовых отчетов и пр.), когда оба бухгалтера заняты обслуживанием ранее обратившихся работников, то он уходит из бухгалтерии, не ожидая обслуживания. Статистический анализ показал, что среднее число сотрудников, обращающихся в бухгалтерию в течение часа, равно ; среднее время, которое затрачивает бухгалтер на оформление документа, равно Тср мин. (значения  и Тср по вариантам даны ниже в таблице).

Оценить основные характеристики работы данной бухгалтерии как СМО с отказами (указание руководства не допускать непроизводительных потерь рабочего времени!). Сколько бухгалтеров должно работать в бухгалтерии в отведенные дни с сотрудниками, чтобы вероятность обслуживания сотрудников была выше 85%?

Параметр  Параметр Тср=1/μ

12 10

Выдержка из текста

Задание 1. Теория двойственности.

В предлагаемой альтернативной хозяйственной ситуации получите с помощью средств MS Excel (надстройка Поиск решения) оптимальный план производства продукции, проведите экономико-математический анализ оптимального плана с помощью двойственных оценок.

1.6. На основе информации, приведенной в таблице, решается задача оптимального использования сырья для максимизации выручки от реализации готовой продукции.

Вид сырья Нормы расхода сырья на единицу продукции Запасы

сырья

А Б В

I 18 15 12 360

II 6 4 8 192

III 5 3 3 180

Цена единицы продукции 9 10 16 —

1. Сформулируйте прямую оптимизационную задачу на максимум выручки от реализации готовой продукции, получите оптимальный план выпуска продукции.

2. Сформулируйте двойственную задачу и найдите ее оптимальный план (двойственные оценки).

3. Поясните нулевые значения переменных в оптимальном плане.

4. На основе свойств двойственных оценок и теорем двойственности:

а) проанализируйте использование сырья в оптимальном плане исходной задачи;

б) определите, как изменятся выручка и план выпуска продукции, если запасы сырья первого вида увеличить на 45 единиц, а запасы сырья второго вида уменьшить на 9 единиц;

в) оцените целесообразность включения в план выпуска продукции изделия «Г» ценой 11 единиц, на изготовление которого расходуется 9, 4 и 6 единиц соответствующего вида сырья.

Список использованной литературы

Задание 4. Игра.

Имеется возможность вложить деньги в три инвестиционных фонда открытого типа: простой, специальный (обеспечивающий минимальную долгосрочную прибыль от акций мелких компаний) и глобальный. Прибыль инвестиции может изменяться в зависимости от условий рынка. Таблица содержит значения процентов прибыли от суммы инвестиции при 3 возможностях развития рынка.

Фонды Процент прибыли от инвестиции (%)

Ухудшающийся Умеренный Растущий

Фонд-1 N2 N2+1 N1 /2

Фонд-2 N1 N1 + N2 N2

Фонд-3 N1 -N2 (N1 + N2)/2 N1

1. Вычислить нижние и верхние цены игры и найти седловые точки (если они есть).

2. Какой фонд следует выбрать? Применить критерии: Вальда, Сэвиджа, Гурвица (α=1/2), Байеса.

N1 = 6, N2 =6.

Задача 5. Управление запасами.

Рассчитать параметры моделей экономически выгодных размеров заказываемых партий. Построить графики общих годовых затрат и изменения запасов.

5.6. Предприятие пищевой промышленности ежемесячно использует около 25000 стеклянных банок объемом 1 литр для производства фруктового сока. Месячная стоимость хранения – 10 коп. за 1 банку. Компания работает в среднем 20 дней в месяц. Затраты на осуществление заказа составляют 300 руб. Время доставки заказа 1 день. Определите оптимальный объем заказа, годовые расходы на хранение запасов, период поставок, точку заказа.

Похожие записи