Пример готовой контрольной работы по предмету: Высшая математика
Содержание
Задание 1
Вопрос
1. Что такое матрица?
1. число;
2. вектор;
3. таблица;
4. функция;
5. нет правильного ответа.
Вопрос
2. Что означают числа в индексе у элементов матрицы?
1. степень;
2. числа, на которые нужно последовательно умножить элемент;
3. порядок матрицы;
4. номер строки и столбца;
5. нет правильного ответа.
Вопрос
3. Сколько свойств определителей Вам известно?
1. 0;
2. 5;
3. 1;
4. 2;
5. 3.
Вопрос
4. Что означает запись размер матрицы (2х 4)?
1. матрица нулевая;
2. матрица квадратная;
3. матрица имеет две строки и 4 столбца;
4. определитель матрицы равен 24;
5. нет правильного ответа.
Вопрос
5. Какое из приведенных утверждений верным не является:
1. Определитель не изменится, если его строки поменять местами с соответствующими столбцами;
2. При перестановке двух строк (или столбцов) определитель изменит знак на противоположный, сохраняя абсолютную величину;
3. Определитель с двумя одинаковыми строками и столбцами равен нулю;
4. Общий множитель всех элементов строки или столбца можно выносить за знак определителя; если все элементы какой-то строки или столбца равны 0, то и определитель равен 0;
5. Если к элементам какой либо строки (или столбца) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель изменит свою величину.
Задание 2
Вопрос
1. Что такое минор М
1. для матрицы (3х 3)?
1. определитель, составленный из элементов матрицы, путем вычеркивания второй стоки и третьего столбца и взятым со знаком минус;
2. определитель, равный нулю;
3. определитель, составленный из элементов матрицы, путем вычеркивания второй стоки и третьего столбца;
4. определитель, составленный из элементов матрицы, путем вычеркивания первой стоки и первого столбца;
5. нет правильного ответа.
Вопрос
2. Как получить М 23?
1. умножить матрицу на два;
2. вычислить определитель матрицы, вычеркнув 1-ю строку и первый столбец;
3. нет правильного ответа;
4. записать определитель, полученный при вычеркивании второй строки и третьего столбца.
5. умножить матрицу на три.
Вопрос
3. Что такое алгебраическое дополнение?
1. Мji;
2. Aiк =(-1)i+к Мiк;
3. определитель матрицы;
4. порядок матрицы;
5. нет правильного ответа.
Вопрос
4. Отметьте формулу разложения определителя 3-го порядка по второй строке?
1. ∆=а 11А 11 + а 12 А 12 +а 13А 13;
2. ∆=а 21А 21 + а 22 А 22 +а 23А 23;
3. ∆=а 21А 13 + а 22 А 23 +а 31А 33;
4. ∆=а 11А 23 + а 12 А 13 +а 12А 33;
5. нет правильного ответа.
Вопрос
5. Можно ли разложить определитель четвертого порядка по первой строке?
1. нет;
2. да;
3. иногда;
4. нет правильного ответа;
5. если 1-й элемент не равен 0.
Задание 3
Продолжить изучение главы
1. пункт 1.2.
Выбрать правильный ответ к вопросу и отметить его в карточке ответов.
Вопрос
1. Можно ли сложить матрицы А (2х 3) и В (2х 3)?
1. нет;
2. да;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос
2. Можно ли сложить матрицы А(2х 3) и В(3х 4)?
1. нет ;
2. да;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Какая матрица называется квадратной?
1. матрица, у которой число строк равно числу столбцов;
2. симметрическая;
3. матрица, у которой число строк больше числа столбцов;
4. матрица, у которой число строк меньше числа столбцов;
5. нет правильного ответа.
Вопрос
4. Можно ли умножить матрицу А(2х
2. на число С?
1. нет;
2. да;
3. да, при этом определитель увеличится в С раз;
4. нет корректного ответа;
5. да, но только если с=0.
Вопрос
5. Можно ли вычесть матрицу А(2х
3. из матрицы В(2х 3)?
1. нет;
2. всегда;
3. иногда;
4. если 1-й элемент не равен 0;
5. нет правильного ответа.
Задание 4
Вопрос 1.Что такое нуль – матрица?
1. матрица, все элементы которой – нули;
2. прямоугольная матрица;
3. матрица, на главной диагонали которой находятся нули;
4. единичная матрица;
5. нет правильного ответа.
Вопрос
2. Можно ли перемножить матрицы А(2х 2) и В(2х 2)?
1. нет;
2. да;
3. только, если все элементы матрицы А=0;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Можно ли выполнить действие А(3х 4) х В(4х 2)?
1. да;
2. нет;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос
4. Можно ли выполнить действие А(2х 3) х В(4х 2)?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
5. Приведите пример единичной матрицы. Укажите ее порядок.
1.
2. или второго порядка;
3. или третьего порядка;
4. или третьего порядка;
5. нет правильного ответа.
Задание 5
Вопрос
1. Изменится ли квадратная матрица А(3х 3), если ее умножить на единичную матрицу?
1. да;
2. нет;
3. она станет нулевой;
4. она станет единичной;
5. нет правильного ответа.
Вопрос.
2. Чему равен определитель единичной матрицы?
1. 0;
2. 1;
3. 2;
4. 3;
5. 18.
Вопрос
3. Что значит транспонировать матрицу?
1. обнулить;
2. элемент с номером ij поместить на место ji и наоборот;
3. умножить на матрицу Е;
4. элементы с номером ii положить равными нулю;
5. элементы с номером ii положить равными 1.
Вопрос
4. Как обозначаются элементы транспонированной матрицы?
1. вij-1;
2. λ вij;
3. в*ij;
4. 5 вij;
5. нет правильного ответа.
Вопрос
5. Чему равно произведение А•А-1?
1. 0;
2. Е;
3. А+А;
4. А*;
5. нет правильного ответа
Задание 6.
Вопрос
1. Можно ли найти обратную матрицу, для матрицы, имеющей Δ=0?
1. можно;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
2. Что такое матрица системы?
1. нулевая матица;
2. матрица Е;
3. матрица, состоящая из коэффициентов свободных членов;
4. матрица, состоящая из коэффициентов левой части;
5. нет правильного ответа.
Вопрос
3. Что такое матричное уравнение?
1. равенство вида ах 2+вх+с=0;
2. равенство вида А•Х=С, где А,Х,С – матрицы;
3. равенство вида у=кх+в;
4. равенство вида 2+18=2;
5. нет правильного ответа.
Вопрос
4. Можно ли решить систему уравнений матричным способом, если определитель матрицы системы равен нулю?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
5. Что такое определитель системы второго порядка?
1. ;
2. ;
3. ;
4. ;
5. нет правильного ответа.
Задание 7.
Вопрос
1. Когда вектора и коллинеарны?
1. когда ≠ 0;
2. когда ≠ 0;
3. скалярное произведение этих векторов равно 0;
4. когда =λ ;
5. нет правильного ответа.
Вопрос
2. Как записать разложение по ортам вектора =АВ, где точки А(3; 5;7) и В(5;9;12)?
1. ;
2. ;
3. ;
4. ;
5. .
Вопрос 3. В каком случае вектора называются линейно независимыми?
1. Если они — коллинеарные;
3. возможно, если хоть один из коэффициентов λ 1,…λк ≠ 0;
4. нулевые;
5. нет правильного ответа.
Вопрос
4. Какое выражение называется линейной комбинацией векторов?
1. в = 0;
3. а = (с,d);
4. а – в = d;
5. нет правильного ответа.
Вопрос
5. Могут ли четыре вектора на плоскости быть линейно независимы?
1. да;
2. всегда;
3. иногда;
4. нет правильного ответа.
5. нет.
Задание 8
Вопрос
1. Являются ли векторы–орты компланарными?
1. нет;
2. да;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
2. Могут ли четыре вектора в трехмерном пространстве быть линейно независимы?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Может ли векторное произведение векторов и лежать в плоскости, образованной этими векторами, если оно не равно нулю?
1. да;
2. нет;
3. иногда;
4. нет правильного ответа.
5. всегда.
Вопрос
4. Что изменится в векторном произведении, если изменить порядок перемножаемых векторов?
1. Порядок компонент (координат) вектора–произведения;
2. знаки компонент вектора-произведения;
3. модуль синуса угла между перемножаемыми векторами;
4. длина вектора-результата;
5. нет правильного ответа.
Вопрос
5. Что Вы можете сказать о координатах векторов и , если они коллинеарны?
1. они равны нулю;
2. их координаты пропорциональны;
3. они положительны;
4. они отрицательны;
5. нет правильного ответа.
Задание 9
Вопрос
1. Смешанное произведение это вектор или скаляр (то есть число)?
1. вектор;
2. матрица;
3. скаляр;
4. 0;
5. нет правильного ответа.
Вопрос
2. Скалярное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос
3. Чему равен модуль (длина) векторного произведения и ?
1. площади параллелограмма, построенного на векторах, как на сторонах;
2. 0;
3. 1;
4. модуля вектора ;
5. 2.
Вопрос
4. Векторное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос
5. Чему равен модуль смешанного произведения векторов ?
1. 0;
2. объему параллелепипеда, построенного на векторах ;
3. 1;
4. объему пирамиды, построенной на векторах ;
5. нет правильного ответа.
Задание 10
Вопрос
1. Укажите уравнение прямой на плоскости с угловым коэффициентом?
1. у=кх+ в;
2. х 2+у2=5;
3. у-у0=3(х-х 0);
4.
5. х 2 +у=0;
Вопрос
2. Верно ли, что уравнение второй степени задаёт прямую на плоскости ?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Укажите уравнение пучка прямых, проходящих через точку (х 0, у0).
1. у=кх+в;
2. у-у0 =к (х-х 0);
3. ;
4. 3х=5у+2;
5. нет правильного ответа
Вопрос
4. Укажите общее уравнение прямой на плоскости.
1. у=3х+2;
2. Ах+Ву+С=0;
3. у=2х+3;
4. х 2+у2=5;
5. нет правильного ответа.
Вопрос
5. Укажите уравнение прямой, содержащее координаты двух точек, через которые она проходит.
1. ;
2. у=кх+в;
3. х 2 +2у=0;
4. у=2х+3;
5. нет правильного ответа.
Задание 11
Вопрос
1. Укажите каноническое уравнение прямой на плоскости.
1. х=2;
2. , где (m,n) – направляющий вектор;
3. у=2х;
4. у=5;
5. нет правильного ответа.
Вопрос
2. Укажите уравнение плоскости, проходящей через три заданные точки А(х 1у1z 1) А(х 2у2z 2) А(х 3у3z 3)/
1. ;
2. Ах+Ву+Сz+D=0;
3. z=5;
4. х+у-z=0;
5. нет правильного ответа.
Вопрос
3. Укажите общее уравнение плоскости в пространстве.
1. 2х 2+3у+z+5=0;
2. Ах+Ву+Сz+D=0;
3. Ах+Ву+С=0;
4. Z=0;
5. нет правильного ответа.
Вопрос
4. Укажите каноническое уравнение прямой, проходящей через точку М 0(х 0у0z 0) и имеющей направляющий вектор L(Lx,Lу,Lz).
1. у=х –L;
2. ;
3. ;
4. х — Lx +y — Lу +z — Lz =0;
5. нет правильного ответа.
Вопрос
5. Являются ли плоскости 2х+3у+7z+5=0 и 10х+15у+7z+5=0 параллельными?
1. да;
2. нет;
3. иногда;
4. только при определенных значениях переменных;
5. нет правильного ответа.
Задание 12
Вопрос
1. Отметьте каноническое уравнение окружности.
1. у=кх+в;
2. у=const=C;
3. у=5;
4. (х-х 0)2+(у-у0)2=R2;
5. нет правильного ответа.
Вопрос
2. Укажите каноническое уравнение эллипса.
1. у2+2х+у0=0;
2. (х-х 0)(у-у0)=0;
3. ;
4. нет правильного ответа;
5. .
Вопрос
3. Укажите каноническое уравнение гиперболы.
1. ;
2. у=2х;
3. (у-у0)2= (х-х 0) 2;
4. у=0;
5. нет правильного ответа
Вопрос
4. Укажите каноническое уравнение параболы с директрисой, перпендикулярной Ох.
1. у=3х+5;
2. (у-у0)2=2p(х-х 0);
3. у=5;
4. все ответы верны;
5. нет правильного ответа.
Вопрос
5. Какие прямые являются асимптотами гиперболы?
1. ;
2. у=Z;
3. у=5;
4. х=2;
5. нет правильного ответа.
Задание 13
Вопрос 1. В каком случае можно определить обратную функцию?
1. когда каждый элемент имеет единственный прообраз;
2. когда функция постоянна;
3. когда функция не определена;
4. когда функция многозначна;
5. нет правильного ответа.
Вопрос
2. Что называется функцией?
1. число;
2. правило, по которому каждому значению аргумента х соответствует одно и только одно значение функции у;
3. вектор;
4. матрица;
5. нет правильного ответа.
Вопрос
3. Какая функция называется ограниченной?
1. обратная;
2. функция f(x) называется ограниченной, если m ≤ f(x) ≤ M;
3. сложная;
4. функция f(x) называется ограниченной, если f(x) › 0;
5. функция f(x) называется ограниченной, если f(x) ≤ 0;
Вопрос
4. Какая точка называется предельной точкой множества А?
1. нулевая;
2. т.х 0 называется предельной точкой множества А, если в любой окрестности точки х 0 содержатся точки множества А, отличающиеся от х 0;
3. не принадлежащая множеству А;
4. нет правильного ответа;
5. лежащая на границе множества.
Вопрос
5. Может ли существовать предел в точке в том случае, если односторонние пределы не равны?
1. да;
2. иногда;
3. нет;
4. всегда;
5. нет правильного ответа.
Задание 14
Вопрос
1. Является ли функция бесконечно малой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос
2. Является ли функция бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. если х=0;
5. нет правильного ответа.
Вопрос
3. Является ли функция у=sin x бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос
4. Является ли функция у=cos x бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос
5. Является ли функция у=tg x бесконечно большой в т. х 0=0?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Задание 15
Вопрос
1. Является ли произведение бесконечно малой в точке х 0 функции на функцию ограниченную, бесконечно малой в точке х 0?
1. нет;
2. да;
3. иногда;
4. не всегда;
5. нет правильного ответа.
Вопрос 2. В каком случае бесконечно малые α (х) и β(х) называются бесконечно малыми одного порядка в точке х 0?
1. если они равны;
2. если ;
3. если ;
4. если их пределы равны 0;
5. нет правильного ответа.
Вопрос
3. Чему равен предел константы С?
1. 0;
2. Е;
3. 1;
4. ∞;
5. с.
Вопрос
4. Сколько видов основных элементарных функций мы изучили?
1. 5;
2. 1;
3. 0;
4. 2;
5. 3.
Вопрос
5. Является ли степенная функция непрерывной на всей области определения?
1. нет;
2. да;
3. иногда;
4. при х >1;
5. нет правильного ответа.
Задание 16
Вопрос
1. Укажите формулу первого замечательного предела.
1.
2.
3. ;
4. у´=кх+в;
5. нет правильного ответа.
Вопрос
2. Укажите формулу второго замечательного предела.
1. 0;
2.
3.
4.
5.
Вопрос
3. Если f(x 0+0)=f(x 0-0)=L, но f(x 0) ≠ L, какой разрыв имеет функция?
1. нет правильного ответа;
2. 2-го рода;
3. устранимый;
4. неустранимый;
5. функция непрерывна.
Вопрос
4. Какие функции называются непрерывными?
1. бесконечно малые;
2. удовлетворяющие условиям: а) f определима в т. х 0 б) существует и равен f(x 0);
3. бесконечно большие;
4. степенные;
5. тригонометрические.
Вопрос
5. Какой разрыв имеет f(x) в т. х
0. если f(x 0-0)≠ f(x 0+0), и не известно: конечны ли эти пределы?
1. устранимый;
2. неустранимый;
3. функция непрерывна;
4. 1-го рода;
5. 2-го рода.
Задание 17
Вопрос
1. Сформулируйте свойство непрерывности сложной функции.
1. сложная функция непрерывна всегда;
2. если функция u=g(х) непрерывна в точке х 0 и функция у=f(u) непрерывна в точке u=g(х 0), то сложная функция у=f(g(x)) непрерывна в точке х 0.
3. сложная функция, являющаяся композицией непрерывных функций не является непрерывной;
4. сложная функция разрывна;
5. сложная функция является композицией непрерывных функций и имеет устранимый разрыв.
Вопрос
2. Является ли функция у=(1-х 2)3 непрерывной на множестве всех чисел?
1. нет;
2. да;
3. при х >1;
4. иногда;
5. нет правильного ответа.
Вопрос3. Что такое производная функции?
1. Предел значения этой функции;
2.
3. 0;
4. 1;
5. е.
Вопрос
4. Какая функция является дифференцируемой в точке х=4 ?
1.
2. ln(x-4);
3. имеющая производную в точке х=4 ;
4. непрерывная в точке х=4;
5. нет правильного ответа.
Вопрос
5. Какая функция называется дифференцируемой на интервале (а,в)?
1. дифференцируемая в каждой точке этого интервала;
2. разрывная в каждой точке интервала;
3. постоянная;
4. возрастающая;
5. убывающая.
Задание 18
Вопрос
1. Чему равна производная функции у=х 5?
1. 0;
2. 1;
3. е;
4. 5х 4;
5. нет правильного ответа.
Вопрос
2. Найти вторую производную от функции у=sin x.
1. cos x;
2. -sin x;
3. tg x;
4. 1;
5. 0.
Вопрос
3. Как называется главная, линейная часть приращения функции?
1. производная;
2. дифференциал (dу);
3. функция;
4. бесконечно малая;
5. бесконечно большая.
Вопрос
4. Какие виды неопределенностей можно раскрыть при помощи правила Лопиталя?
1. ;
2. ∞ — ∞;
3. 00;
4. ∞ 0;
5. С х 0.
Вопрос
5. Сформулируйте правило Лопиталя.
1. ;
2. , если предел правой части существует;
3. ;
4. нет правильного ответа;
5. .
Задание 19
Вопрос
1. Функция f(x) – непрерывная и дифференцируемая в точке х
0. Является ли х 0 точкой максимума, если:
1. f(x) > f(x
0. для всех x из некоторой окрестности х 0;
2. f(x) < f(x
0. для всех x из некоторой окрестности х 0;
3. f '(x 0) = 0;
4. f "(x 0) = 0;
5. f '(x) при переходе через x 0 меняет знак с – на +.
Вопрос
2. Функция f(x) – непрерывная и дифференцируемая в точке х
0. Является ли х 0 точкой перегиба, если:
1. f '(x 0) = 0;
2. f "(x 0) = 0;
3. f "(x) при переходе через x 0 не меняет знак;
4. f '(x) при переходе через x 0 меняет знак;
5. нет правильного ответа.
Вопрос
3. Найдите промежутки возрастания функции y = x 3 – 2x 2 – 15x – 10.
1. (- 5/3; 3);
2. (- ∞ ;
- 5/3) U (3; + ∞);
3. (- ∞ ;
- 3) U (5/3; + ∞);
4. (- 3; 5/3);
5. нет правильного ответа.
Вопрос
4. Сколько точек перегиба у графика функции y = (x 1/2 + 3) 2 ?
1. 3;
2. бесконечно много;
3. 1;
4. 2;
5. ни одной.
Вопрос
5. Найти вертикальную асимптоту функции
1. x = 1;
2. x = -1;
3. x = 4;
4. x = -4;
5. нет асимптот.
Задание 20
Вопрос
1. Какая функция называется функцией двух переменных?
1. f(x);
2. z=f(x,у);
3. нет правильного ответа;
4. n=f(x,у,z);
5. f(x)=const=c.
Вопрос
2. Вычислить предел функции .
1. 0;
2. 29;
3. 1;
4. 5;
5. 2.
Вопрос
3. Вычислить предел функции
1. 1;
2. 0;
3. 16;
4. 18;
5. 20.
Вопрос
4. Какие линии называются линиями разрыва?
1. прямые;
2. состоящие из точек разрыва;
3. параболы;
4. эллипсы;
5. нет правильного ответа.
Вопрос
5. Найти первую производную по у от функции z=3x+2у.
1. 3;
2. 2;
3. 0;
4. 5;
5. нет правильного ответа.
Задание 21
Вопрос
1. Во сколько этапов проходит процесс выбора решений в исследовании операций?
1. 2;
2. 4;
3. 5;
4. 1;
5. 3.
Вопрос
2. Какой метод не относится к методу решения задач линейного программирования?
1. Симплексный;
2. Комбинированный;
3. Модифицированный симплексный;
4. Графический;
5. Нет правильного ответа.
Вопрос 3. В каком виде должны быть представлены ограничения в общей задаче для решения ее графическим методом?
1. уравнение;
2. неравенства;
3. уравнения и неравенства;
4. тождества;
5. нет правильного ответа.
Вопрос 4. В каком виде должны быть представлены ограничения в общей задаче для решения ее симплексным методом?
1. неравенство;
2. уравнения и неравенства;
3. уравнения;
4. тождества;
5. нет правильного ответа.
Вопрос
5. На чем основан графический метод решения задач математического программирования?
1. Построения графика целевой функции и нахождение ее наибольшего или наименьшего значения;
2. Построения графиков условий ограничений и нахождения многоугольника решений;
3. нахождение точек пересечения целевой функции с условиями ограничений;
4. исследование целевой функции на экстремум;
5. нет правильного ответа
Выдержка из текста
Задание 1
Вопрос
1. Что такое матрица?
1. число;
2. вектор;
3. таблица;
4. функция;
5. нет правильного ответа.
Вопрос
2. Что означают числа в индексе у элементов матрицы?
1. степень;
2. числа, на которые нужно последовательно умножить элемент;
3. порядок матрицы;
4. номер строки и столбца;
5. нет правильного ответа.
Вопрос
3. Сколько свойств определителей Вам известно?
1. 0;
2. 5;
3. 1;
4. 2;
5. 3.
Вопрос
4. Что означает запись размер матрицы (2х 4)?
1. матрица нулевая;
2. матрица квадратная;
3. матрица имеет две строки и 4 столбца;
4. определитель матрицы равен 24;
5. нет правильного ответа.
Вопрос
5. Какое из приведенных утверждений верным не является:
1. Определитель не изменится, если его строки поменять местами с соответствующими столбцами;
2. При перестановке двух строк (или столбцов) определитель изменит знак на противоположный, сохраняя абсолютную величину;
3. Определитель с двумя одинаковыми строками и столбцами равен нулю;
4. Общий множитель всех элементов строки или столбца можно выносить за знак определителя; если все элементы какой-то строки или столбца равны 0, то и определитель равен 0;
5. Если к элементам какой либо строки (или столбца) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель изменит свою величину.
Задание 2
Вопрос
1. Что такое минор М
1. для матрицы (3х 3)?
1. определитель, составленный из элементов матрицы, путем вычеркивания второй стоки и третьего столбца и взятым со знаком минус;
2. определитель, равный нулю;
3. определитель, составленный из элементов матрицы, путем вычеркивания второй стоки и третьего столбца;
4. определитель, составленный из элементов матрицы, путем вычеркивания первой стоки и первого столбца;
5. нет правильного ответа.
Вопрос
2. Как получить М 23?
1. умножить матрицу на два;
2. вычислить определитель матрицы, вычеркнув 1-ю строку и первый столбец;
3. нет правильного ответа;
4. записать определитель, полученный при вычеркивании второй строки и третьего столбца.
5. умножить матрицу на три.
Вопрос
3. Что такое алгебраическое дополнение?
1. Мji;
2. Aiк =(-1)i+к Мiк;
3. определитель матрицы;
4. порядок матрицы;
5. нет правильного ответа.
Вопрос
4. Отметьте формулу разложения определителя 3-го порядка по второй строке?
1. ∆=а 11А 11 + а 12 А 12 +а 13А 13;
2. ∆=а 21А 21 + а 22 А 22 +а 23А 23;
3. ∆=а 21А 13 + а 22 А 23 +а 31А 33;
4. ∆=а 11А 23 + а 12 А 13 +а 12А 33;
5. нет правильного ответа.
Вопрос
5. Можно ли разложить определитель четвертого порядка по первой строке?
1. нет;
2. да;
3. иногда;
4. нет правильного ответа;
5. если 1-й элемент не равен 0.
Задание 3
Продолжить изучение главы
1. пункт 1.2.
Выбрать правильный ответ к вопросу и отметить его в карточке ответов.
Вопрос
1. Можно ли сложить матрицы А (2х 3) и В (2х 3)?
1. нет;
2. да;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос
2. Можно ли сложить матрицы А(2х 3) и В(3х 4)?
1. нет ;
2. да;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Какая матрица называется квадратной?
1. матрица, у которой число строк равно числу столбцов;
2. симметрическая;
3. матрица, у которой число строк больше числа столбцов;
4. матрица, у которой число строк меньше числа столбцов;
5. нет правильного ответа.
Вопрос
4. Можно ли умножить матрицу А(2х
2. на число С?
1. нет;
2. да;
3. да, при этом определитель увеличится в С раз;
4. нет корректного ответа;
5. да, но только если с=0.
Вопрос
5. Можно ли вычесть матрицу А(2х
3. из матрицы В(2х 3)?
1. нет;
2. всегда;
3. иногда;
4. если 1-й элемент не равен 0;
5. нет правильного ответа.
Задание 4
Вопрос 1.Что такое нуль – матрица?
1. матрица, все элементы которой – нули;
2. прямоугольная матрица;
3. матрица, на главной диагонали которой находятся нули;
4. единичная матрица;
5. нет правильного ответа.
Вопрос
2. Можно ли перемножить матрицы А(2х 2) и В(2х 2)?
1. нет;
2. да;
3. только, если все элементы матрицы А=0;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Можно ли выполнить действие А(3х 4) х В(4х 2)?
1. да;
2. нет;
3. только, если все элементы матрицы В=1;
4. иногда;
5. нет правильного ответа.
Вопрос
4. Можно ли выполнить действие А(2х 3) х В(4х 2)?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
5. Приведите пример единичной матрицы. Укажите ее порядок.
1.
2. или второго порядка;
3. или третьего порядка;
4. или третьего порядка;
5. нет правильного ответа.
Задание 5
Вопрос
1. Изменится ли квадратная матрица А(3х 3), если ее умножить на единичную матрицу?
1. да;
2. нет;
3. она станет нулевой;
4. она станет единичной;
5. нет правильного ответа.
Вопрос.
2. Чему равен определитель единичной матрицы?
1. 0;
2. 1;
3. 2;
4. 3;
5. 18.
Вопрос
3. Что значит транспонировать матрицу?
1. обнулить;
2. элемент с номером ij поместить на место ji и наоборот;
3. умножить на матрицу Е;
4. элементы с номером ii положить равными нулю;
5. элементы с номером ii положить равными 1.
Вопрос
4. Как обозначаются элементы транспонированной матрицы?
1. вij-1;
2. λ вij;
3. в*ij;
4. 5 вij;
5. нет правильного ответа.
Вопрос
5. Чему равно произведение А•А-1?
1. 0;
2. Е;
3. А+А;
4. А*;
5. нет правильного ответа
Задание 6.
Вопрос
1. Можно ли найти обратную матрицу, для матрицы, имеющей Δ=0?
1. можно;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
2. Что такое матрица системы?
1. нулевая матица;
2. матрица Е;
3. матрица, состоящая из коэффициентов свободных членов;
4. матрица, состоящая из коэффициентов левой части;
5. нет правильного ответа.
Вопрос
3. Что такое матричное уравнение?
1. равенство вида ах 2+вх+с=0;
2. равенство вида А•Х=С, где А,Х,С – матрицы;
3. равенство вида у=кх+в;
4. равенство вида 2+18=2;
5. нет правильного ответа.
Вопрос
4. Можно ли решить систему уравнений матричным способом, если определитель матрицы системы равен нулю?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
5. Что такое определитель системы второго порядка?
1. ;
2. ;
3. ;
4. ;
5. нет правильного ответа.
Задание 7.
Вопрос
1. Когда вектора и коллинеарны?
1. когда ≠ 0;
2. когда ≠ 0;
3. скалярное произведение этих векторов равно 0;
4. когда =λ ;
5. нет правильного ответа.
Вопрос
2. Как записать разложение по ортам вектора =АВ, где точки А(3; 5;7) и В(5;9;12)?
1. ;
2. ;
3. ;
4. ;
5. .
Вопрос 3. В каком случае вектора называются линейно независимыми?
1. Если они — коллинеарные;
3. возможно, если хоть один из коэффициентов λ 1,…λк ≠ 0;
4. нулевые;
5. нет правильного ответа.
Вопрос
4. Какое выражение называется линейной комбинацией векторов?
1. в = 0;
3. а = (с,d);
4. а – в = d;
5. нет правильного ответа.
Вопрос
5. Могут ли четыре вектора на плоскости быть линейно независимы?
1. да;
2. всегда;
3. иногда;
4. нет правильного ответа.
5. нет.
Задание 8
Вопрос
1. Являются ли векторы–орты компланарными?
1. нет;
2. да;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
2. Могут ли четыре вектора в трехмерном пространстве быть линейно независимы?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Может ли векторное произведение векторов и лежать в плоскости, образованной этими векторами, если оно не равно нулю?
1. да;
2. нет;
3. иногда;
4. нет правильного ответа.
5. всегда.
Вопрос
4. Что изменится в векторном произведении, если изменить порядок перемножаемых векторов?
1. Порядок компонент (координат) вектора–произведения;
2. знаки компонент вектора-произведения;
3. модуль синуса угла между перемножаемыми векторами;
4. длина вектора-результата;
5. нет правильного ответа.
Вопрос
5. Что Вы можете сказать о координатах векторов и , если они коллинеарны?
1. они равны нулю;
2. их координаты пропорциональны;
3. они положительны;
4. они отрицательны;
5. нет правильного ответа.
Задание 9
Вопрос
1. Смешанное произведение это вектор или скаляр (то есть число)?
1. вектор;
2. матрица;
3. скаляр;
4. 0;
5. нет правильного ответа.
Вопрос
2. Скалярное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос
3. Чему равен модуль (длина) векторного произведения и ?
1. площади параллелограмма, построенного на векторах, как на сторонах;
2. 0;
3. 1;
4. модуля вектора ;
5. 2.
Вопрос
4. Векторное произведение – это число или вектор?
1. число;
2. вектор;
3. вектор и число;
4. 0;
5. 1;
Вопрос
5. Чему равен модуль смешанного произведения векторов ?
1. 0;
2. объему параллелепипеда, построенного на векторах ;
3. 1;
4. объему пирамиды, построенной на векторах ;
5. нет правильного ответа.
Задание 10
Вопрос
1. Укажите уравнение прямой на плоскости с угловым коэффициентом?
1. у=кх+ в;
2. х 2+у2=5;
3. у-у0=3(х-х 0);
4.
5. х 2 +у=0;
Вопрос
2. Верно ли, что уравнение второй степени задаёт прямую на плоскости ?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Вопрос
3. Укажите уравнение пучка прямых, проходящих через точку (х 0, у0).
1. у=кх+в;
2. у-у0 =к (х-х 0);
3. ;
4. 3х=5у+2;
5. нет правильного ответа
Вопрос
4. Укажите общее уравнение прямой на плоскости.
1. у=3х+2;
2. Ах+Ву+С=0;
3. у=2х+3;
4. х 2+у2=5;
5. нет правильного ответа.
Вопрос
5. Укажите уравнение прямой, содержащее координаты двух точек, через которые она проходит.
1. ;
2. у=кх+в;
3. х 2 +2у=0;
4. у=2х+3;
5. нет правильного ответа.
Задание 11
Вопрос
1. Укажите каноническое уравнение прямой на плоскости.
1. х=2;
2. , где (m,n) – направляющий вектор;
3. у=2х;
4. у=5;
5. нет правильного ответа.
Вопрос
2. Укажите уравнение плоскости, проходящей через три заданные точки А(х 1у1z 1) А(х 2у2z 2) А(х 3у3z 3)/
1. ;
2. Ах+Ву+Сz+D=0;
3. z=5;
4. х+у-z=0;
5. нет правильного ответа.
Вопрос
3. Укажите общее уравнение плоскости в пространстве.
1. 2х 2+3у+z+5=0;
2. Ах+Ву+Сz+D=0;
3. Ах+Ву+С=0;
4. Z=0;
5. нет правильного ответа.
Вопрос
4. Укажите каноническое уравнение прямой, проходящей через точку М 0(х 0у0z 0) и имеющей направляющий вектор L(Lx,Lу,Lz).
1. у=х –L;
2. ;
3. ;
4. х — Lx +y — Lу +z — Lz =0;
5. нет правильного ответа.
Вопрос
5. Являются ли плоскости 2х+3у+7z+5=0 и 10х+15у+7z+5=0 параллельными?
1. да;
2. нет;
3. иногда;
4. только при определенных значениях переменных;
5. нет правильного ответа.
Задание 12
Вопрос
1. Отметьте каноническое уравнение окружности.
1. у=кх+в;
2. у=const=C;
3. у=5;
4. (х-х 0)2+(у-у0)2=R2;
5. нет правильного ответа.
Вопрос
2. Укажите каноническое уравнение эллипса.
1. у2+2х+у0=0;
2. (х-х 0)(у-у0)=0;
3. ;
4. нет правильного ответа;
5. .
Вопрос
3. Укажите каноническое уравнение гиперболы.
1. ;
2. у=2х;
3. (у-у0)2= (х-х 0) 2;
4. у=0;
5. нет правильного ответа
Вопрос
4. Укажите каноническое уравнение параболы с директрисой, перпендикулярной Ох.
1. у=3х+5;
2. (у-у0)2=2p(х-х 0);
3. у=5;
4. все ответы верны;
5. нет правильного ответа.
Вопрос
5. Какие прямые являются асимптотами гиперболы?
1. ;
2. у=Z;
3. у=5;
4. х=2;
5. нет правильного ответа.
Задание 13
Вопрос 1. В каком случае можно определить обратную функцию?
1. когда каждый элемент имеет единственный прообраз;
2. когда функция постоянна;
3. когда функция не определена;
4. когда функция многозначна;
5. нет правильного ответа.
Вопрос
2. Что называется функцией?
1. число;
2. правило, по которому каждому значению аргумента х соответствует одно и только одно значение функции у;
3. вектор;
4. матрица;
5. нет правильного ответа.
Вопрос
3. Какая функция называется ограниченной?
1. обратная;
2. функция f(x) называется ограниченной, если m ≤ f(x) ≤ M;
3. сложная;
4. функция f(x) называется ограниченной, если f(x) › 0;
5. функция f(x) называется ограниченной, если f(x) ≤ 0;
Вопрос
4. Какая точка называется предельной точкой множества А?
1. нулевая;
2. т.х 0 называется предельной точкой множества А, если в любой окрестности точки х 0 содержатся точки множества А, отличающиеся от х 0;
3. не принадлежащая множеству А;
4. нет правильного ответа;
5. лежащая на границе множества.
Вопрос
5. Может ли существовать предел в точке в том случае, если односторонние пределы не равны?
1. да;
2. иногда;
3. нет;
4. всегда;
5. нет правильного ответа.
Задание 14
Вопрос
1. Является ли функция бесконечно малой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос
2. Является ли функция бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. если х=0;
5. нет правильного ответа.
Вопрос
3. Является ли функция у=sin x бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос
4. Является ли функция у=cos x бесконечно большой при х→∞?
1. да;
2. нет;
3. иногда;
4. всегда;
5. нет правильного ответа.
Вопрос
5. Является ли функция у=tg x бесконечно большой в т. х 0=0?
1. да;
2. нет;
3. всегда;
4. иногда;
5. нет правильного ответа.
Задание 15
Вопрос
1. Является ли произведение бесконечно малой в точке х 0 функции на функцию ограниченную, бесконечно малой в точке х 0?
1. нет;
2. да;
3. иногда;
4. не всегда;
5. нет правильного ответа.
Вопрос 2. В каком случае бесконечно малые α (х) и β(х) называются бесконечно малыми одного порядка в точке х 0?
1. если они равны;
2. если ;
3. если ;
4. если их пределы равны 0;
5. нет правильного ответа.
Вопрос
3. Чему равен предел константы С?
1. 0;
2. Е;
3. 1;
4. ∞;
5. с.
Вопрос
4. Сколько видов основных элементарных функций мы изучили?
1. 5;
2. 1;
3. 0;
4. 2;
5. 3.
Вопрос
5. Является ли степенная функция непрерывной на всей области определения?
1. нет;
2. да;
3. иногда;
4. при х >1;
5. нет правильного ответа.
Задание 16
Вопрос
1. Укажите формулу первого замечательного предела.
1.
2.
3. ;
4. у´=кх+в;
5. нет правильного ответа.
Вопрос
2. Укажите формулу второго замечательного предела.
1. 0;
2.
3.
4.
5.
Вопрос
3. Если f(x 0+0)=f(x 0-0)=L, но f(x 0) ≠ L, какой разрыв имеет функция?
1. нет правильного ответа;
2. 2-го рода;
3. устранимый;
4. неустранимый;
5. функция непрерывна.
Вопрос
4. Какие функции называются непрерывными?
1. бесконечно малые;
2. удовлетворяющие условиям: а) f определима в т. х 0 б) существует и равен f(x 0);
3. бесконечно большие;
4. степенные;
5. тригонометрические.
Вопрос
5. Какой разрыв имеет f(x) в т. х
0. если f(x 0-0)≠ f(x 0+0), и не известно: конечны ли эти пределы?
1. устранимый;
2. неустранимый;
3. функция непрерывна;
4. 1-го рода;
5. 2-го рода.
Задание 17
Вопрос
1. Сформулируйте свойство непрерывности сложной функции.
1. сложная функция непрерывна всегда;
2. если функция u=g(х) непрерывна в точке х 0 и функция у=f(u) непрерывна в точке u=g(х 0), то сложная функция у=f(g(x)) непрерывна в точке х 0.
3. сложная функция, являющаяся композицией непрерывных функций не является непрерывной;
4. сложная функция разрывна;
5. сложная функция является композицией непрерывных функций и имеет устранимый разрыв.
Вопрос
2. Является ли функция у=(1-х 2)3 непрерывной на множестве всех чисел?
1. нет;
2. да;
3. при х >1;
4. иногда;
5. нет правильного ответа.
Вопрос3. Что такое производная функции?
1. Предел значения этой функции;
2.
3. 0;
4. 1;
5. е.
Вопрос
4. Какая функция является дифференцируемой в точке х=4 ?
1.
2. ln(x-4);
3. имеющая производную в точке х=4 ;
4. непрерывная в точке х=4;
5. нет правильного ответа.
Вопрос
5. Какая функция называется дифференцируемой на интервале (а,в)?
1. дифференцируемая в каждой точке этого интервала;
2. разрывная в каждой точке интервала;
3. постоянная;
4. возрастающая;
5. убывающая.
Задание 18
Вопрос
1. Чему равна производная функции у=х 5?
1. 0;
2. 1;
3. е;
4. 5х 4;
5. нет правильного ответа.
Вопрос
2. Найти вторую производную от функции у=sin x.
1. cos x;
2. -sin x;
3. tg x;
4. 1;
5. 0.
Вопрос
3. Как называется главная, линейная часть приращения функции?
1. производная;
2. дифференциал (dу);
3. функция;
4. бесконечно малая;
5. бесконечно большая.
Вопрос
4. Какие виды неопределенностей можно раскрыть при помощи правила Лопиталя?
1. ;
2. ∞ — ∞;
3. 00;
4. ∞ 0;
5. С х 0.
Вопрос
5. Сформулируйте правило Лопиталя.
1. ;
2. , если предел правой части существует;
3. ;
4. нет правильного ответа;
5. .
Задание 19
Вопрос
1. Функция f(x) – непрерывная и дифференцируемая в точке х
0. Является ли х 0 точкой максимума, если:
1. f(x) > f(x
0. для всех x из некоторой окрестности х 0;
2. f(x) < f(x
0. для всех x из некоторой окрестности х 0;
3. f '(x 0) = 0;
4. f "(x 0) = 0;
5. f '(x) при переходе через x 0 меняет знак с – на +.
Вопрос
2. Функция f(x) – непрерывная и дифференцируемая в точке х
0. Является ли х 0 точкой перегиба, если:
1. f '(x 0) = 0;
2. f "(x 0) = 0;
3. f "(x) при переходе через x 0 не меняет знак;
4. f '(x) при переходе через x 0 меняет знак;
5. нет правильного ответа.
Вопрос
3. Найдите промежутки возрастания функции y = x 3 – 2x 2 – 15x – 10.
1. (- 5/3; 3);
2. (- ∞ ;
- 5/3) U (3; + ∞);
3. (- ∞ ;
- 3) U (5/3; + ∞);
4. (- 3; 5/3);
5. нет правильного ответа.
Вопрос
4. Сколько точек перегиба у графика функции y = (x 1/2 + 3) 2 ?
1. 3;
2. бесконечно много;
3. 1;
4. 2;
5. ни одной.
Вопрос
5. Найти вертикальную асимптоту функции
1. x = 1;
2. x = -1;
3. x = 4;
4. x = -4;
5. нет асимптот.
Задание 20
Вопрос
1. Какая функция называется функцией двух переменных?
1. f(x);
2. z=f(x,у);
3. нет правильного ответа;
4. n=f(x,у,z);
5. f(x)=const=c.
Вопрос
2. Вычислить предел функции .
1. 0;
2. 29;
3. 1;
4. 5;
5. 2.
Вопрос
3. Вычислить предел функции
1. 1;
2. 0;
3. 16;
4. 18;
5. 20.
Вопрос
4. Какие линии называются линиями разрыва?
1. прямые;
2. состоящие из точек разрыва;
3. параболы;
4. эллипсы;
5. нет правильного ответа.
Вопрос
5. Найти первую производную по у от функции z=3x+2у.
1. 3;
2. 2;
3. 0;
4. 5;
5. нет правильного ответа.
Задание 21
Вопрос
1. Во сколько этапов проходит процесс выбора решений в исследовании операций?
1. 2;
2. 4;
3. 5;
4. 1;
5. 3.
Вопрос
2. Какой метод не относится к методу решения задач линейного программирования?
1. Симплексный;
2. Комбинированный;
3. Модифицированный симплексный;
4. Графический;
5. Нет правильного ответа.
Вопрос 3. В каком виде должны быть представлены ограничения в общей задаче для решения ее графическим методом?
1. уравнение;
2. неравенства;
3. уравнения и неравенства;
4. тождества;
5. нет правильного ответа.
Вопрос 4. В каком виде должны быть представлены ограничения в общей задаче для решения ее симплексным методом?
1. неравенство;
2. уравнения и неравенства;
3. уравнения;
4. тождества;
5. нет правильного ответа.
Вопрос
5. На чем основан графический метод решения задач математического программирования?
1. Построения графика целевой функции и нахождение ее наибольшего или наименьшего значения;
2. Построения графиков условий ограничений и нахождения многоугольника решений;
3. нахождение точек пересечения целевой функции с условиями ограничений;
4. исследование целевой функции на экстремум;
5. нет правильного ответа
Список использованной литературы
—