Пример готовой контрольной работы по предмету: Статистика
Содержание
Введение 3
1. Сущность метода наименьших квадратов 4
2. Свойства оценок на основе метода наименьших квадратов 8
2.1 Несмещенность оценок 9
2.2 Оптимальность оценок 10
Заключение 11
Список используемой литературы 12
Выдержка из текста
До начала XIX в. учёные не имели опредёленных правил для решения системы уравнений, в которой число неизвестных менее числа уравнений; до этого времени употреблялись частные приёмы, зависевшие от вида уравнений и от остроумия вычислителей, и потому разные вычислители, исходя из тех же данных наблюдений, приходили к различным выводам.
Метод получил название метода наименьших квадратов, потому что после подстановки в начальные уравнения неизвестных величин, выведенных этим способом, в правых частях уравнений получаются если и не нули, то небольшие величины, сумма квадратов которых оказывается меньшей, чем сумма квадратов подобных же остатков, после подстановки каких бы то ни было других значений неизвестных. Помимо этого, решение уравнений по способу наименьших квадратов даёт возможность выводить вероятные ошибки неизвестных, то есть даёт величины, по которым судят о степени точности выводов.
В связи с этим рассматриваемая проблема представляется актуальной и заслуживающей изучения.
Целью данной работы является изучение свойств оценок на основе метода наименьших квадратов.
Для этого необходимо решить следующие задачи:
- рассмотреть сущность метода наименьших квадратов;
- изучить несмещенность МНК-оценок;
- исследовать оптимальность МНК-оценок.
Список использованной литературы
1 Басовский Л.Е. Эконометрика: Учеб. пособие. — М.: Издательство РИОР, 2005. — 48с.
2 Наименьших квадратов метод // bse.chemport.ru/naimenshih_kvadratov_metod.shtml
3 Орлов, А.И. Менеджмент: Учебник / А.И. Орлов. — М.: Издательство "Изумруд", 2003. // www.aup.ru/books
4 ru.wikipedia.org/wiki/Метод_наименьших_квадратов
5 www.rus-lib.ru/book