Пример готовой курсовой работы по предмету: Высшая математика
Содержание
Оглавление
Введение
RSA
Выделение полного квадрата (Алгоритм Ферма)
Квадратичное решето
Поиск необходимого множества делителей
Алгоритмы факторизации Полларда (методы Монте-Карло)
Метод Монте-Карло
1. поиск цикла в рекуррентной последовательности
Метод Монте-Карло 2: (p-1)–алгоритм Полларда
Заключение
Список литературы
?
Выдержка из текста
Асимметричные криптосистемы устроены таким образом, что ключ, используемый для зашифрования , отличается от ключа расшифрования . Более того, ключ расшифрования не может быть (по крайней мере, в течение разумного периода) вычислен из ключа зашифрования . Такие алгоритмы называют алгоритмами с открытым ключом, поскольку ключ зашифрования может быть открытым: кто угодно может воспользоваться этим ключом для зашифрования сообщения, однако расшифровать сообщение может только конкретный человек, знающий ключ расшифрования . В таких системах ключ зашифрования часто называют открытым ключом, а ключ расшифрования — закрытым ключом. Закрытый ключ нередко называют секретным ключом, однако во избежание путаницы с симметричными алгоритмами, здесь этот термин не используется. Т.е у пользователя есть два ключа — секретный и открытый. Открытый ключ публикуется в общедоступном месте, и каждый, кто захочет послать сообщение этому пользователю — зашифровывает текст открытым ключом. Расшифровать сможет только упомянутый пользователь с секретным ключом. Таким образом, пропадает проблема передачи секретного ключа (как у симметричных систем).
В некоторых случаях сообщения следует зашифровывать закрытым ключом, а расшифровывать — открытым ключом. Такой метод используют в цифровых подписях. Стойкость асимметричных криптосистем базируется, в основном, на алгоритмической трудности решить за приемлемое время какую-либо задачу. Если злоумышленнику удастся построить такой алгоритм, то дискредитирована будет вся система и все сообщения, зашифрованные с помощью этой системы. В этом состоит главная опасность асимметричных криптосистем в отличие от симметричных. Примеры — системы о.ш . RSA , система о.ш . Рабина и т.д. Однако, несмотря на все свои преимущества, эти криптосистемы достаточно трудоемки и медлительны. Существует несколько хорошо известных асимметричных криптосистем: RSA , Эль Гамаля ( El Gamal ), Рабина ( Rabin ).
Поскольку в этих криптосистемах вид преобразования определяется ключом, публикуют только открытый ключ с указанием, для какой криптосистемы он используется. Секретный и открытый ключ как правило взаимосвязаны между собой, но то, как конкретно они связаны — известно только их владельцу и получить секретный ключ по соответствующему открытому ключу вычислительно невозможно.
Список использованной литературы
Список литературы
1.Rivest R. L., Shamir A., Adleman L. A method for obtaining digital signatures and public-key cryptosystems (англ.) // Communications of the ACM. — New York, NY, USA: ACM, 1978. — Т. 21. — № 2, Feb. 1978. — С. 120— 126. — ISSN 0001-0782. — DOI:10.1.1.40.5588
2.Menezes A., P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography. — CRC-Press, 1996. — 816 p. — (Discrete Mathematics and Its Applications).
- ISBN 0-8493-8523-7
3.Венбо Мао. Современная криптография. Теория и практика = Modern Cryptography: Theory and Practice. — М.: Вильямс, 2005. — 768 с. — 2000 экз. — ISBN 5-8459-0847-7, ISBN 0-13-066943-1
4.Фергюсон Н, Б. Шнайер. Практическая криптография = Practical Cryptography: Designing and Implementing Secure Cryptographic Systems. — М.: Диалектика, 2004. — 432 с. — 3000 экз. — ISBN 5-8459-0733-0, ISBN 0-4712-2357-3
5.Шнайер Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си = Applied Cryptography. Protocols, Algorithms and Source Code in C. — М.: Триумф, 2002. — 816 с. — 3000 экз. — ISBN 5-89392-055-4