Пример готовой курсовой работы по предмету: Высшая математика
Содержание
Введение 3
Глава
1. Постановка задачи и основные определения 5
1.1 Постановка задачи 5
1.2 Леммы и обозначения 7
Глава
2. Основные результаты 10
Заключение 13
Список источников 14
Выдержка из текста
Развитие теории дифференциальных уравнений с разрывными правыми частями в значительной степени вызвано многочисленными приложениями. Большое число задач из механики, электротехники и теории автоматического управления, описывается этими уравнениями.
Широкое использование различных переключателей (реле) в системах автоматического управления приводит к необходимости построения достаточно развитой теории таких уравнений. Различным вопросам этой теории посвящены отдельные параграфы и главы в книгах, а также большое число журнальных статей.
Как известно, решением дифференциального уравнения с непрерывной правой частью называется функция x(f), которая всюду на данном интервале имеет производную и удовлетворяет этому уравнению. Для дифференциальных уравнений с разрывными правыми частями такое определение непригодно.
Рассмотрение дифференциальных уравнений с разрывной правой ча-стью требует обобщения понятия решения. При этом в случаях, когда правая часть уравнения непрерывна по х и разрывна только по t, обычно оказывается возможным обобщить понятие решения, пользуясь лишь математическими соображениями.
В случаях же, когда правая часть уравнения разрывна по х, часто простейшие математические соображения оказываются недостаточными. Тогда решение определяется при помощи предельного перехода с учетом физического смысла рассматриваемой задачи.
Уравнение Каратеодори – обыкновенное дифференциальное уравнение:
в котором правая часть (т.е. компоненты вектор-функцииf) удовлетворяет не классическому условию, обеспечивающему существование и единствен-ностьрешения с заданным начальным значением(непрерывность по совокупности аргументов иусловие Липшицапоx), а некоторому существенно более слабому условию, называемомуусловием Каратеодори:
• вектор-функцияfопределена и непрерывна поxдляпочти всех(в смыслемеры Лебега)tв областиDпространства(t,x).
• вектор-функцияfизмеримапоtдля каждогоxв областиD.
• для каждого ограниченного интервала осиtв областиDвыполняется неравенство гдеm(t)– суммируемая (т.е.интегрируемая по Лебегу) функция.
Решениемуравнения Каратеодори (*) с начальным условиемx(t 0)=x
0 называется измеримая вектор-функцияx(t),удовлетворяющая интегральному уравнению:
Уравнения Каратеодори находят применения в различных областях математики. Кроме того, они обладают многими свойствами, присущим классическим уравнениям с непрерывной правой частью.
В представленной работе дается оценка точности приближения реше-ний дифференциального уравнения типа Каратеодори с начальным условием с помощьюдискретной схемы, построенной на основании интегрального методаЭйлера.
Список использованной литературы
1. Бахвалов Н., Жидков Н., Кобельков Г. Численные методы. М.: Физматлит, 2002. 632 с.
2. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М: Наука, 1985. 224 с.
3. Красносельский М.А., Крейн С.Г. Нелокальные теоремы существования и теоремы единственности для систем обыкновенных дифференциальных уравнений // ДАН СССР. 1955. Т. 102, № 1. С. 13-16.
4. DonchevT.,FarchiE. Stability and Euler approximation of one-sided Lipschitz differential inclusions // SIAM J. Control Optim. 1998. V. 36. No. 2. P. 780-796.
5. Матросов В.М., Анапольский Л.Ю., Васильев С.Н. Метод сравнения в математической теории систем. Новосибирск: Наука, 1980. 480 с.