Оглавление
1. Введение 2
2. История возникновения диофантовых уравнений 4
Диофант и история диофантовых уравнений 8
Число решений уравнения 10
Уравнения с одной неизвестной 12
Уравнения с двумя неизвестными 12
Примеры решений задач 16
О «многоугольных числах» Диофанта. 18
Диофант Александрийский «О многоугольных числах» 20
Треугольные числа 21
Квадратные числа 21
Пятиугольные числа 22
Общий случай 22
3. Общее решение линейных диофантовых уравнений 23
3.1 Однородные уравнения 23
3.2 Общие линейные уравнения 23
4. Примеры задач 25
Задача 1 25
Задача 2 (одна из задач Диофанта) 25
Задача 3 25
Задача 4 26
5. Заключение 27
Список использованных источников 28
Приложение 1 29
Содержание
Выдержка из текста
Для решения поставленных задач использовались взаимодополняющие методы исследования: методы теоретического исследования (теоретический анализ психолого-педагогических исследований), диагностический метод (тестирование), констатирующий и формирующий эксперименты.
с трех, является первым, начиная от единицы, называется многоугольником и имеет столько углов, сколько в нем содержится единиц, стороной же его будет число, которое следует за единицей, т. е. 2. Тогда 3 будет треугольником, 4 — четырехугольником, 5 — пятиугольником и т. д.
Задача №368. В первой урне 5 белых и 9 черных шаров. Во второй урне 11 белых и 10 черных шаров. Из первой урны во вторую переложили 3 шара, а затем из второй урны вынули один шар. Найти вероятность того, что этот шар черный.