Пример готовой курсовой работы по предмету: Высшая математика
Содержание
Введение.
Функция – одно из основных понятий во всех естественнонаучных дисциплинах. Не случайно ещё в средней школе дети получают интуитивное представление об этом понятии. Со школьной скамьи наш багаж знаний пополняется сведениями о таких функциях как линейная, квадратичная, степенная, показательная, тригонометрические и других. В курсе высшей математики круг известных функций значительно расширяется. Сюда добавляются интегральные и гиперболические функции, эйлеровы интегралы (гамма- и бета-функции), тета-функции, функции Якоби и многие другие.
Что же такое функция? Строгого определения для неё не существует. Это понятие является в математике первичным, аксиоматизируется. Однако, под функцией понимают закон, правило, по которому каждому элементу какого-то множества X ставится в соответствие один или несколько элементов множества Y. Элементы множества X называются аргументами, а множества Y – значениями функции. Если каждому аргументу соответствует одно значение, функция называется однозначной, если более одного – то многозначной. Синонимом функции является термин «отображение». В простейшем случае множество X может быть подмножеством поля действительных R или комплексных C чисел. Тогда функция называется числовой. Нам будут встречаться только такие отображения.
Выдержка из текста
Введение.
Функция – одно из основных понятий во всех естественнонаучных дисциплинах. Не случайно ещё в средней школе дети получают интуитивное представление об этом понятии. Со школьной скамьи наш багаж знаний пополняется сведениями о таких функциях как линейная, квадратичная, степенная, показательная, тригонометрические и других. В курсе высшей математики круг известных функций значительно расширяется. Сюда добавляются интегральные и гиперболические функции, эйлеровы интегралы (гамма- и бета-функции), тета-функции, функции Якоби и многие другие.
Что же такое функция? Строгого определения для неё не существует. Это понятие является в математике первичным, аксиоматизируется. Однако, под функцией понимают закон, правило, по которому каждому элементу какого-то множества X ставится в соответствие один или несколько элементов множества Y. Элементы множества X называются аргументами, а множества Y – значениями функции. Если каждому аргументу соответствует одно значение, функция называется однозначной, если более одного – то многозначной. Синонимом функции является термин «отображение». В простейшем случае множество X может быть подмножеством поля действительных R или комплексных C чисел. Тогда функция называется числовой. Нам будут встречаться только такие отображения.
Список использованной литературы
Введение.
Функция – одно из основных понятий во всех естественнонаучных дисциплинах. Не случайно ещё в средней школе дети получают интуитивное представление об этом понятии. Со школьной скамьи наш багаж знаний пополняется сведениями о таких функциях как линейная, квадратичная, степенная, показательная, тригонометрические и других. В курсе высшей математики круг известных функций значительно расширяется. Сюда добавляются интегральные и гиперболические функции, эйлеровы интегралы (гамма- и бета-функции), тета-функции, функции Якоби и многие другие.
Что же такое функция? Строгого определения для неё не существует. Это понятие является в математике первичным, аксиоматизируется. Однако, под функцией понимают закон, правило, по которому каждому элементу какого-то множества X ставится в соответствие один или несколько элементов множества Y. Элементы множества X называются аргументами, а множества Y – значениями функции. Если каждому аргументу соответствует одно значение, функция называется однозначной, если более одного – то многозначной. Синонимом функции является термин «отображение». В простейшем случае множество X может быть подмножеством поля действительных R или комплексных C чисел. Тогда функция называется числовой. Нам будут встречаться только такие отображения.