Пример готовой курсовой работы по предмету: Теория вероятности
Содержание
Введение
1. Теоретические основы корреляционного и регрессионного анализа
2. Практическая часть
2.1 Графическое представление данных.
2.2 Выборочные параметры вариации рядов Х и Y
2.3 Корреляционная таблица
2.4 Графическое представление данных выборки
2.5 Выборочные параметры по сгруппированной выборке
2.6 Вычисление параметров для уравнения линейной регрессии
Заключение
Список источников
Содержание
Выдержка из текста
Для двумерной дискретной случайной величины (XY):1) найти законы распределения случайных величин X и Y;
3. проверить зависимость случайных величин.
Всесторонний и глубокий анализ информации — туристических потоков, так называемых статистических данных, предполагает использование различных специальных методов, важное место среди которых занимает корреляционный и регрессионный анализы обработки статистических данных. Не все факторы, влияющие на процессы в туризме, являются случайными величинами, поэтому при анализе этих явлений обычно рассматриваются связи между случайными и неслучайными величинами. Под причиной зависимостью принимается такая связь между процессами, когда изменение одного из них является следствием изменение другого.
Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности.
Как видно, из вышесказанного, корреляционнорегрессионный анализ называют основным методом современной математической статистики для выявления неявных и завуалированных связей между данными наблюдений. Особую ценность этот метод приобрел после появления ЭВМ, тат как математические процедуры такого анализа довольно легко стало реализовывать в виде алгоритмов и программ статистической обработки данных. Например, электронные таблицы делают такой анализ легким, доступным и информативным. Таким образом, регрессионные вычисления и подбор хороших уравнений это ценный, универсальный исследовательский инструмент в самых разнообразных отраслях деловой и научной деятельности (техника, экономика, торговля, биология, медицина и т. д.).
Усвоив технологию использования этого инструмента, можно применять его по мере необходимости, получая знание о скрытых связях, улучшая аналитическую поддержку принятия решений и повышая их обоснованность.
Проведение подобного анализа влечет за собой расчет показателей корреляции, поэтому, как правило, при изучении взаимосвязи социально-экономических явлений проводится корреляционно-регрессионный анализ.
метод изучения статистических зависимостей между исследуемыми явлениями и процессами хозяйственной деятельности предприятий, фирм, компаний; методы многофакторного регрессионного анализа и экстраполяции экономических процессов; Исследование корреляционных отношений имеет место в анализе:
9. Осуществите прогнозирование среднего значения показателя Y при уровне значимости α = 0,1, если прогнозное значение фактора Хj составит
80. от его максимального значения. Представьте на графике фактические данные Y, результаты моделирования, прогнозные оценки и границы доверительного интервала.
Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, но не причинно-следственные отношения.Сама по себе регрессия представляет собой функцию, которая позволяет по средней величине одного признака определить среднюю величину другого признака, что в свою очередь, связанн с первым корреляционно.
3.Уравнению регрессии соответствует множественный коэффициент корреляции ry/12=0,84. Доля вариации результативного показателя, объясняемая влиянием случайных, не включенных в модель факторов, составляет (%):
Под финансовым состоянием понимается способность предприятия финансировать свою деятельность. Оно характеризуется обеспеченностью финансовыми ресурсами, необходимыми для нормального функционирования предприятия, целесообразностью их размещения и эффективностью использования, финансовыми взаимоотношениями c другими юридическими и физическими лицами, платежеспособностью и финансовой устойчивостью. Способность предприятия своевременно производить платежи, финансировать свою деятельность на расширенной основе свидетельствует о его хорошем финансовом состоянии. Финансовое состояние предприятия зависит от результатов его производственной, коммерческой и финансовой деятельности. Если производственный и финансовый планы успешно выполняются, то это положительно влияет на финансовое положение предприятия. И наоборот, в результате недовыполнения по производству и реализации продукции происходит повышение ее себестоимость, уменьшение выручки и суммы прибыли и как следствие — ухудшение финансового состояния предприятия и его платежеспособность. Устойчивое финансовое положение в свою очередь оказывает положительное влияние на выполнение производственных планов и обеспечение нужд производства необходимыми ресурсами.
Список источников
1. Гмурман В.Е. Теория вероятностей и математическая статистика: Учебное пособие для вузов. – М.: Высш. шк., 2003. – 479 с.
2. Теория статистики с основами теории вероятностей. Учеб. пособие для вузов/Под ред. И.И. Елисеевой. – М.: ЮНИТИ-ДАНА, 2001. – 446 с.
3. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М.: ЮНИТИ–ДАНА, 2004. – 573 с.
список литературы