Пример готовой курсовой работы по предмету: Высшая математика
Оглавление
Введение 4
1 Избранные теоремы геометрии 6
1.1 Теорема Чевы 6
1.1.1 Исторические сведения 6
1.1.2 Доказательство теоремы Чевы 6
1.1.3 Применение теоремы Чевы при решении задач 8
1.2 Теорема Менелая 9
1.2.1 Исторические сведения о теореме Менелая 9
1.2.2 Доказательство теоремы Менелая 9
1.2.3 Примеры применения теоремы Менелая 11
1.3 Теорема Пифагора 12
1.3.1 Исторические сведения о теореме Пифагора 12
1.3.2 Доказательства теоремы Пифагора 13
1.3.3 Применение теоремы Пифагора при решении задач 15
1.4 Теорема косинусов для четырехугольников 16
1.4.1 Исторические сведения 16
1.4.2 Доказательство теоремы косинусов для четырехугольников 16
1.4.3 Применение теоремы косинусов для четырёхугольника 18
1.5 Теорема Птолемея 19
1.5.1 Исторические сведения 19
1.5.2 Доказательство теоремы Птолемея 19
1.5.3 Применение теоремы Птолемея 21
1.6 Теорема Вариньона 22
1.6.1 Дополнительные сведения о теореме Вариньона 22
1.6.2 Доказательство теоремы Вариньона 23
1.6.3 Применение теоремы Вариньона при решении задач 24
1.7 Теорема Брахмагупты 24
1.7.1 Дополнительные сведения 24
1.7.2 Формулировка теоремы 25
2 Задачи на применение теорем 26
Заключение 30
Список использованных источников. 31
Содержание
Выдержка из текста
Актуальность данной работы состоит в том, что в данное время большинство из представленных теорем, не изучается в программе школьной геометрии, поэтому знакомство с ними происходит лишь на дополнительных факультативных занятиях или на внеклассных мероприятиях по математике. Поэтому многие не знакомы не только с доказательством, но и с формулировками теорем. Кроме того, в данной работе, не просто изложена информация о теоремах, но и историческая справка, которой обладают многие очень интересные теоремы привычной геометрии Евклида.
Теорема эта сегодня является классической теоремой геометрии треугольника. Можно сказать, что эта теорема служит фундаментом всей геометрии треугольника.Предметом работы является теорема Чевы и её обобщения, обратная теорема Чевы.
88 В торговом зале супермаркета на полке лежат
1. коробок конфет. Из них 3 коробки с карамелью, 7 коробок шоколадных конфет. Какова вероятность наугад взять с полки коробку с шоколадными конфетами?
u и v – функции, одна из которых подбирается для максимального упрощения уравнения, получаемого после замены, а другая определяется в зависимости от первой так, чтобы выполнялось исходное линейное уравнение
u и v – функции, одна из которых подбирается для максимального упрощения уравнения, получаемого после замены, а другая определяется в зависимости от первой так, чтобы выполнялось исходное линейное уравнение
Таково классическое определение геометрии, или, вернее, таково действительное значение классической геометрии. Однако современная геометрия во многих своих дисциплинах выходит далеко за пределы этого определения. уже не может служить первичным понятием, на котором покоится определение геометрии, а, напротив, само находит себе определение в ходе развития геометрических идей.
Как назывался первый учебник по геометрии, изданный в Как назвали геометрию, построенную Н.гие аксиомы и теоремы геометрии Лобачевского?
Сравнительный анализ учебных пособий по геометрии для 7 – 9 классов 3.2 Учебник геометрии 7 – 11 (авторы Погорелов А.1.1.4 Теорема Пифагора
В 1854 г. Риман в своей диссертации «О гипотезах, лежащих в основаниях геометрии» дал глубокое и богатое по содержанию обобщение идей Гаусса и Лобачевского. Эта работа была опубликована лишь в 1868 г. после смерти Римана. В этой работе он впервые дал построение n-мерного аналитического пространства, связал вопрос о движении с вопросом о постоянстве кривизны пространства, дал образец взаимного проникновения и органического слияния геометрии и анализа. Как один из частных результатов, Риманом была получена так называемая эллиптическая геометрия, отличная от геометрий Евклида и Лобачевского, в которой через точку, лежащую вне прямой, не проходит ни одной параллельной к этой прямой и все прямые замкнуты. Развитие идей Лобачевского Риманом приблизило создание тензорного исчисления и явилось этапом, подготовившим впоследствии почву для создания теории относительности.
РФЭТ, Экономика и бухгалтерский учет, 3 курс Математика Экзамен
10. вопросов ОтветыЗащита на
9. баллов
ДИФФЕРЕНЦИРОВАННЫЙЗАЧЕТпо учебной дисциплине«МАТЕМАТИКА»
Вместе с образовательной целью, заключающейся, с точки зрения автора, в усвоении фактического материала основного курса геометрии и того метода его логического развертывания, какой характерен для евклидовой стадии развития геометрии, ее изучение преследует и воспитательную цель, развивая логические навыки учащихся и их пространственное воображение. Правильно рассуждать они учатся на занятиях любого предмета учебного плана, но, ни в одной дисциплине рассуждения не занимают столь большого и видного места, как в геометрии. Изучая геометрию, учащиеся приучаются правильно давать определения, правильно классифицировать понятия, различать условия и заключение в каждом предложении, различать предложение прямое, обратное, противоположное, понимать их взаимную зависимость, устанавливать условия, необходимые и достаточные, пользоваться различными методами доказательства и т.п.
Однако все новые проблемы и созданные в связи с ними теории привели к тому, что совершенствовались сами способы математических доказательств, возрастала потребность создания стройной логической системы в геометрии.
Список использованных источников.
1. Бронштэн В.А. «Клавдий Птолемей»// «Астрономия» П. И. Попова, К. Л. Баева, Б. А. Воронцова-Вельяминова и Р. В. Куницкого, Москва, «НАУКА», 1988;
2. Глейзер Г. И. «История математики в школе».- М: Просвещение 1982;
3. Затакавай В. «Теорема Птолемея и некоторые тригонометрические соотношения»// «Квант», 1991 г. № 4;
4. Прасолов В.В. «Задачи по планиметрии», 2003 г.
5. Смирнова И., Смирнов В. «Вписанные и описанные многоугольники» // «Квант», 2006 № 4.
6. Дополнительные главы к школьному учебнику 9 класс: Учебное пособие для учащихся школ и классов с углублённым изучением математики/Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадошцев, И. И. Юдина.-М.:Просвещение, 1997.
7. Дополнительные главы к школьному учебнику 8 класс: Учебное пособие для учащихся школ и классов с углублённым изучением математики/Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадошцев, И. И. Юдина, С. А. Шестаков.-М.:Просвещение, 1998.
8. Факультативный курс по математике:Учебное пособи для 7-9 классов средней школы/Сост. И. Л.Нидольская.-М.:Просвещение,1991.
9. Математические кружки в 8-10 классах/Петраков И. С.-М.:Просвещение, 1987.
10. Геометрия 7-9 класс.:Учебник для общеобразовательных учреждений — 7-е издание/Шарыгин И. Ф.-М.:Дрофа, 2004.
11. Учебник для 7-9 класса средней школы/Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина. — 4-е издание.—М.:Просвещение, 1994.
список литературы