Пример готовой курсовой работы по предмету: Технологические машины и оборудование
Содержание
Оглавление
Введение………………………………………………………………………..3
1 Общая характеристика предприятия……………………………………… 7
1.1 Структура и основные производственные показатели НК ТЭЦ……….7
1.2 Производство и потребление электрической энергии………………….12
1.3 Материальный баланс…………………………………………………….13
1.4 Задачи проектирования……………………………………………………14
2 Котельные установки……………………………………………………….15
2.1 Парк котельного оборудования…………………………………………..15
2.2 Устройство котла………………………………………………………….16
2.3 Тепловой расчет котла……………………………………………………..19
2.3.1 Определение низшей теплоты сгорания топлива……………………..19
2.3.2 Избыток воздуха и присосы по газоходам……………………………..20
2.3.3 Объем и энтальпия продуктов сгорания……………………………… 20
2.3.4 Тепловой баланс котла………………………………………………….22
2.3.5 Расчёт теплообмена в топке…………………………………………….24
2.3.6 Расчёт конвективных поверхностей нагрева…………………………..29
2.3.7 Расчёт тяговой установки……………………………………………….43
2.3.8 Расчёт дутьевого вентилятора……………………………………….….47
3. Модернизация привода питательного насоса……………………………..51
3.1. Описание объекта………………………………………………………… 51
3.2. Анализ известных технических решений………………………………..53
3.3 Описание предложенного технического решения……………………… 57
3.3.1 Построение зависимости мощности питательного насоса от частоты
вращения……………………………………………………………………57
3.3.2. Описание конструкции турбопривода…………………………………62
3.4 Технико-экономическое обоснование проекта………………………….72
4. Экология……………………………………………………………………85
4.1. Данные для расчета…………………………………………………….… 85
4.2. Определение выбросов вредных веществ…………………………….… 86
4.3. Предложенные технические решения…………………………………….91
5. Охрана труда………………………………………………………………….92
5.1. Общие положения………………………………………………………….92
5.2.Требования безопасности перед началом работы…………………………………………………………………………… 93
5.3. Требования безопасности во время работы………………………………93
5.4.Требования безопасности по окончании работ……………………………94
5.5. Обслуживание оборудования ТЭЦ………………………………………..95
5.6. Требования пожарной безопасности………………………………………96
5.7. Надзор за работой насосной установки………………………………..97
5.8. Техника безопасности при эксплуатации насосных установок……….99
6. Экономический раздел……………………………………………………..103
6.1. Расчет себестоимости производства тепловой и
электрической энергии………………………………………………………..103
7 Заключение……………………………………………………………………107
Библиографический список…………………………………………………..110
Выдержка из текста
Эффективность предложенного решения возрастает с увеличением допустимого расхода пара в ЧСД, что, возможно, осуществить либо за счет повышения предельного давления за ЧВД (в камере производственного отбора), либо путем модернизации ЧСД. Так, например, для турбин типа ПТ-60 и ПТ-80 ЛМЗ указанные варианты прошли опытную проверку, которая показала возможность увеличения максимального расхода пара в ЧСД на 15-20 % без снижения надежности их работы. Широкое распространение получила модернизация ЧСД этих турбин, разработанная Харьковским ЦКБ «Энергопрогресс», для увеличения пропускной способности и повышения величины Т-отбора.
Т.о. наличие на ТЭЦ турбопривода питательного насоса, включенного по пару между коллекторами Г 1- и Т- отборов помимо прочих решает задачу дополнительной загрузки П-отбора, а следовательно повышение выработки электроэнергии на тепловом потреблении для турбин типа Р и ПТ.
Кроме того, турбопривод, также как гидромуфта или частотный преобразователь, позволяет регулировать производительность и напор насоса. Но он делает это с наибольшей эффективностью, т.к. и гидромуфта, и частотный преобразователь за счет своих дополнительных потерь (Пг.муф. или Пчаст.преобр.) увеличивают потребляемую насосным агрегатом электрическую мощность на всех режимах.
Питательные насосы ТЭЦ являются важными элементами электростанции, обеспечивающими нормальную работу энергоблока и его основного оборудования. Необходимая мощность питательного насоса зависит от расхода питательной воды , т.е. от мощности основного турбоагрегата и его параметров.
Как правило применяются многоступенчатые питательные насосы центробежного типа. Возможны два варианта привода питательного насоса- электрический и турбинный. В первом случае насос приводится асинхронным электродвигателем с постоянной частотой вращения около nэ.д.=50 с-1. Расчетную частоту вращения насоса больших производительности и напора целесообразно увеличивать, чтобы nнас>nэ.д., что, однако, требует включения редукторной передачи, усложняющей и удорожающей насосный агрегат, снижающей его КПД. Существенным недостатком электропривода является постоянство частоты вращения, в то время как у насоса в зависимости от режима работы частота вращения должна меняться. Поэтому при переменных режимах работы между приводом и насосом включается гидромуфта. В этом случае мощность насосного агрегата примерно пропорциональна квадрату расхода питательной воды.
Другой способ — паротурбинный привод питательного насоса. Приводная паровая турбина (турбопривод) питается паром от главной турбины, в турбинах ТЭЦ — обычно паром после СПП, т.е. при разделительном давлении и температуре промежуточного перегрева. Поскольку турбопривод может проектироваться практически для любой частоты вращения и работать с переменной частотой, то нет необходимости в использовании редуктора или гидромуфты. При переменных режимах работы турбонасосного агрегата его мощность пропорциональна кубу расхода питательной воды. Выбор номинальной частоты вращения n 0 при проектировании турбонасосного агрегата производится с учетом оптимального конструирования как насоса, так и турбины (n 0=70..130 с-1).
Турбопривод часто выполняется конденсационным, с собственным конденсатором. При конденсационном турбоприводе уменьшается расход пара, поступающего в последнюю ступень ЦНД главной турбины. При этом пропорционально квадрату уменьшения расхода пара сокращаются выходные потери, что немаловажно для экономичности всей турбоустановки.
Турбопривод можно выполнить и с противодавлением: отработавший пар направляется в линию одного из отборов низкого давления. В этом случае исчезает упомянутое преимущество сокращения выходных потерь главной турбины, при пуске главной турбины требуется пусковой электронасос, однако облегчается проектирование самого турбопривода, т.к. в нем нет напряженных длинных последних лопаток, через которые в конденсационном варианте проходит относительно большой объем пара.
В дипломном проекте произведена замена электропривода питательного насоса на турбопривод на НК ТЭЦ.
Список использованной литературы
14. Бусурин В.Н., Рассохин В.А., Садовничий В.Н., Высоконагруженные малорасходные ступени ЛПИ для перспективных турбоустановок. Сб. научных трудов. Исследование элементов теплоэнергетических установок. Изд БГТУ. Брянск. 1999
15. Бусурин В.Н., Рассохин В.А., Садовничий В.Н., Головин Н.М. Разработка и оптимизация паровых турбин ГПУ малой мощности на основе малорасходных ступеней ЛПИ // Тезисы доклада XLV научно-технической сессии по проблемам газовых турбин. 1997. Санкт-Петербург.
16. Бусурин В.Н., Рассохин В.А., Шемагин А.К., Головин Н.М. Многорежимная оптимизация автономных энергетических установок// Материалы научно- технической конференции МОП РФ и МАНВШ. 1997. Санкт-Петербург.
17. Рассохин В.А. Выбор параметров малорасходных турбин. Методические указания / СПбГТУ. СПб, 1997
18. РТМ 24.020.33-75. Турбины паровые и газовые стационарные, компрессоры. Лабиринтные уплотнения. Выбор типа и расчёт протечек. МТЭиТМ, Москва 1976 г, С.35.
19. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок ПНАЭ Г-7-002-86, М, Энергоатомиздат, 1989.
20. А.В.Левин, К.Н.Боришанский, Е.Д.Консон, Прочность и вибрация лопаток и дисков паровых турбин.
21. «Методическими указаниями по составлению отчета электростанции и акционерного общества энергетики и электрификации о тепловой экономичности оборудования» (РД 34.08.552-95), СПО, ОРГРЭС, М, 1995г.
22. Методические рекомендации по оценке эффективности инвестиционных проектов утв. Минэкономики РФ, Минфином РФ и Госстроем РФ от
2. июня 1999 г. N ВК 477.
23. Методика экспресс-оценки экономической эффективности энергосберегающих мероприятий на ТЭС. РД 153-34.1-09.321-2002.