Пример готовой курсовой работы по предмету: математика
Оглавление
Введение 2
Сущность метода 4
Прикладные задачи с использованием метода Монте-Карло 6
Пример 1 Задача о площади (интегрирование) 6
Пример 2 Применение метода Монте-Карло при анализе привлекательности инвестиционного проекта 8
Пример 3 Задача о случайном блуждании 13
Литература 19
Содержание
Выдержка из текста
Поговорим о некоторых трудностях, которые могут встретиться нам на пути применения рассмотренного подхода. Заметим, что нам нужна не любая, а достаточно достоверная оценка искомой величины, т.е. оценка с малой погрешностью. Добиться этого далеко не так просто, как кажется. Большую роль, разумеется, играет адекватность построенной вероятностной модели (такие модели во многих задачах известны).
Конечно, компьютерное моделирование является привлекательным не только по этой причине. Необходимо отметить, что моделирование изучаемой системы дает информацию, в том числе и любую количественную, с требуемой степенью детализации. Например, эксперименты по рассеянию на реальных системах дают информацию о двухчастичных корреляционных функциях, однако получение прямой экспериментальной информации о трехчастичных или более высокого порядка корреляционных функциях крайне затруднено. При компьютерном моделировании можно легко получить трехчастичную корреляционную функцию или даже функции более высокого порядка по крайней мере в принципе.
Цель данной курсовой работы – раскрыть понятие кратного интеграла и изучить методы его решения, а именно: метод повторного интегрирования, метод Люстерника — Диткина и вероятностный метод, — метод Монте-Карло.метод Монте-Карло Рассмотреть применение этих методов при решении задач.
Одним из методов, позволяющих учитывать влияние неопределенности на эффективность инвестиционного проекта, является имитационное моделирование по методу Монте-Карло. Реализация этого способа анализа рисков сложна, но результаты анализа играют важную роль как при оценке влияния неопределенности на показатели эффективности, так и при определении общего уровня риска инвестиционного проекта. Оценка рисков инвестиционных проектов по метопу Монте-Карло основано на том, что при известных законах распределения экзогенных переменных можно с помощью определенной методики получить не единственное значение, а распределение результирующего показателя. Подбор законов распределения экзогенных переменных осуществляется как на данных объективных наблюдений, так и на экспертных оценках.
Использовать методы теории массового обслуживания для исследования предлагаемой хозяйственной ситуации. При моделировании предполагается, что поток требований на обслуживание является простейшим (пуассоновским), а продолжительность обслуживания распределена по экспоненциальному (показательному) закону. Задачу следует решить с помощью средств MS Excel.
Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались мало пригодными. К разделам науки, где все в большей мере используется метод Монте-Карло, следует отнести задачи теории массового обслуживания, задачи теории игр и математической экономики, задачи теории передачи сообщений при наличии помех и ряд других.
Даже беглый просмотр названий работ позволяет сделать вывод о применимости метода Монте-Карло для решения прикладных задач из большого числа областей науки и техники. Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались мало пригодными.Метод Монте-Карло оказал и продолжает оказывать существенное влияние на развитие методов вычислительной математики (например, развитие методов численного интегрирования) и при решении многих задач успешно сочетается с другими вычислительными методами и дополняет их.
Список источников информации
1. Бусленко Н.П., Голенко Д.И., Соболь И.М., Срагович В.Г., Шреацидер Ю.А. Метод стохастических испытаний (метод Монте-Карло).
–М.: ГИМФЛ, 1962.
2. Бусленко Н.П., Шрейдер Ю.А. Метод статистических испытаний Монте-Карло и его реализация в цифровых машинах.–Физматгиз, 1961.
3. Гмурман В.Е. Теория вероятности и математическая статистика.–М.: Высшая школа, 1977.
4. Ермаков С. М. Метод Монте-Карло и смежные вопросы.–М., 1971.
5. Ермаков С.М., Михайлов Г.А. Статистическое моделирование. М: Наука, 1982.
6. Ермаков С.Н., Михайлов Г.А. Курс статистического моделирования.– М.:Наука, 1976.
7. Крамер Г.. Математические методы статистики. М: Мир, 1975.
8. Соболь И.М. Численные методы Монте-Карло.–М.:Наука, 1973.
список литературы