Нахождение кратчайших путей алгоритмом Флойда

Содержание

Цель, постановка задачи и алгоритм….3

Реализация алгоритма4

Программа…7

Результаты.43

Список литературы…48

Выдержка из текста

Цель работы.

Целью курсовой работы было изучить алгоритм Флойда для нахождения кротчайших путей в графе. Написать программу вычисления и отладить её. Провести эксперименты. Споставленной задачей справился успешно.

Постановка задачи.

Задан граф G=G(V,R), |V|=n. Каждому ребру графа (a,b)R a,bV поставлено в соответствие числу l(a,b), называемой длиной (весом) ребра (a,b). Если ребро (a, b) отсутствует, то считаем, что l(a,b)=+∞. Определим длину l(Pab) пути Pab из вершины a в вершину b, как сумму длин ребер, составляющих этот путь.

Задача отыскания кратчайшего пути для заданных вершин s,tV заключается в построении пути из s в t минимальной длины при условии, что такой путь существует. Обозначим такой путь P*st, пустой путь

Список использованной литературы

1.Э.Майника «Алгоритмы оптимизации на сетях и графах»

2.О.И.Мельников, В.А.Емеличев «Лекции по теории графов»

3.В.В.Фаронов «Delphi- программирование на языке высокого уровня»

Похожие записи