Пример готовой курсовой работы по предмету: Наноинженерия
Содержание
Введение 3
1 Техническое применение магнитных жидкостей 4
1.1. Герметизаторы для вращающихся валов 4
1.2 Магнитные жидкости в гидравлических клапанах 5
1.3 Датчик давления 6
1.4. Сепараторы немагнитных материалов 6
1.5. Печатающие аппараты 7
1.6. Очистка воды от нефтепродуктов 8
1.7. Смазка подшипников качения 8
1.8. Опоры 9
1.9. Подшипники 10
1.10. Демпферы 11
1.11. Амортизаторы 12
1.12. Датчик угла наклона 14
1.13. Трансформатор с магнитной жидкостью 15
1.14. Электродинамические громкоговорители 16
2. Использование магнитной жидкости в медицине 17
2.1 Лечение опухолевых заболеваний 17
2.2. Транспортировка препаратов к поражённому органу 19
2.3. Применение магнитной жидкости в качестве рентгеноконтрастного препарата 19
Заключение 20
Список использованной литературы 21
Выдержка из текста
Более пятидесяти лет назад Рональдом Розенцвейгом были синтезированы коллоидные растворы магнитных материалов. Впоследствии эти растворы получили название «магнитные жидкости (Magneticfluids)». Магнитные жидкости (МЖ) – ультрадисперсные (частицы магнитных коллоидов имеют размер порядка
1. нм.) устойчивые коллоиды ферро- или ферримагнитных однодоменных частиц, диспергированных в различных жидкостях и совершающих интенсивное броуновское движение. В качестве дисперсной фазы используют малые частицы таких металлов как железо, кобальт, никель, гадолиний, их разнообразные ферриты, ферромагнитныеоксиды. Для предотвращения коагуляции коллоидного раствора, которая была бы неизбежной вследствие магнитного диполь-дипольного и ван-дер-ваальсовского взаимодействий и последующего укрупнения частиц, в качестве стабилизаторов применяют поверхностно-активные вещества (ПАВ) типа олеиновой кислоты. Наночастицы ведут себя как полностью независимые постоянные магниты, поэтому полная намагниченность такой ферромагнитной жидкости равна нулю до тех пор, пока к ней не прикладывается магнитное поле.
Исследование таких жидкостей имеют большое теоретическое значение, так как связаны с решением фундаментальных физико-химических проблем, а также практическое значение, так как способствуют их применению в машиностроении, электронике, металлургической промышленности, медицине, космической технике и т.д. Сочетание свойств МЖ позволяет использовать все преимущества жидкого материала (малый коэффициент трения в контакте с твёрдым телом, возможность проникать в микрообъёмы, смачивание практически любых поверхностей и др.), в то же время, удерживая МЖ в нужном месте устройства под действием магнитного поля. Таким образом, магнитоуправляемость МЖ является ключевым свойством, обусловливающим эксплуатационные характеристики жидкостей в различных условиях применения.
Список использованной литературы
1. Фертман В.Е. Магнитные жидкости: Справ. Пособие.- Мн.: Высш. Шк., 1988. – 184.: ил.
2. Блум Э.Я., Майоров М.М., Цеберс А.О. Магнитные жидкости. Рига: Зинатне, 1989. 66 c.
3. Магнитные жидкости/ Б.М. Берковский, В.Ф. Медведев, М.С. Краков. – М.: Химия, 1989. 240 с.
4. Такетоми С., Такадзуми С. Магнитные жидкости: Пер. с японск. – М.: Мир, 1993. 272 с. ил.
5. Патент 2306627 РФ, МПК H01F 29/10 H01F 21/08 H01F 3/08. Ханевич С.В., Гнатюк В.И., Луценко Д.В., Шейнин А.А., Ханевич В.С.(РФ).
-№ 2005141011/09; Заявлено 27.12.2005.; Опубл. 20.09.2007.; Бюл. № 26.
6. R. Hergt, R. Hiergeist, I. Hilger, and W. Kaiser. Magnetic Nanoparticles for Thermoablation. Recent Research Developments in Materials Science, Transworld Research Network, 2002.
7. I. Baker Synthesis and Magnetic Heating of Iron Core/Iron Oxide Shell Nanoparticles. Research Experience for Undergraduates 2007
Center for Nanomaterials Research at Dartmouth.