Содержание

Введение 3

1. Современное состояние процесса выпаривания 4

2.Разработка аппаратурно-технологической схемы установки. 8

2.1.Описание установки. 8

2.2. Принцип действия установки. 9

3. Расчетная часть. 10

3.1. Определение поверхности теплопередачи. 10

3.2. Расчет тепловой изоляции. 20

3.3. Расчет барометрического конденсатора. 20

3.4. Расчет производительности вакуум-насоса. 21

Выводы 22

Приложение. Чертеж общего вида аппарата.

Список литературы 23

Содержание

Выдержка из текста

В химической промышленности применяются в основном непрерывно действующие выпарные установки. Лишь в производствах малого масштаба, а также при выпаривании растворов до высоких конечных концентраций иногда используют выпарные аппараты периодического действия. Концентрация раствора в таком аппарате приближается к конечной лишь в конечный период процесса. Поэтому средний коэффициент теплопередачи здесь может быть несколько выше, чем в непрерывно действующем аппарате, где концентрация раствора ближе к конечной в течение всего процесса выпаривания.

В связи с вышеизложенным, в работе будет рассматриваться методика расчёта многокорпусных выпарных установок применительно к двухкорпусной прямоточной вакуум-выпарной установке (ВВУ) с вынесенной зоной нагрева и испарения и принудительной циркуляцией раствора в выпарных аппаратах.

Выпаривания производят на установках, называемых выпарными аппаратами. Выпаривание производят в основном по многоступенчатой схеме, что позволяет снизить расход теплоты. Свежий греющий пар подается только в первый корпус, обогрев всех следующих аппаратов осуществляется вторичным паром предыдущих аппаратов. Существуют различные способы питания выпарной установки: прямоточный, противоточный и смешанный. Процессы выпаривания проводят под вакуумом, при повышенном и атмосферном давлениях. Выбор давления связан со свойствами выпари¬ваемого раствора и возможностью использования тепла вторичного пара.

В качестве теплоносителя используется экстрапар из первого корпуса вакуум-выпарной установки. Далее раствор поступает в первый корпус 5 выпарной установки. Предварительный подогрев раствора повышает интенсивность кипения в выпарном аппарате 5.

Спроектировать 3-х корпусную выпарную установку для выпаривания водного раствора NaOH

Высокие значения КПД существующих ПГУ достигается в основном за счет повышения начальных температур газа перед газовыми турбинами (ГТУ) более 1300 и до 1500 °С с перспективой создания газовых турбин, работающих при начальных температурах газа, равных 1600 °С. При столь высоких температурах КПД ГТУ со-ставляет от 39 до 41 %, а высокий КПД ПГУ (от 58 до 61 %) определяется глубиной утилизации теплоты газов, покидающих газовую турбину, в паротурбинном цикле с начальной температурой пара на уровне от 540 до 560 °С [1].

В данной работе был проведён расчёт циклов паросиловых установок, определены параметры ТЭС, работающей по циклам Ренкина, с регенерацией, с теплофикацией, с промышленным перегревом пара. В результате выполнения работы определены экономические показатели работы турбин. Определена годовая экономия топлива на электростанции за счёт применения регенеративного подогрева питательной воды, а также при переводе турбин на теплофикационный режим и за счёт применения промышленного перегрева пара.

Ретурный пар используется только в I корпусе выпарной установки. Последующие корпуса обогреваются вторичными парами предыдущих корпусов. Из последнего корпуса соковый пар поступает на концентратор, а с него на конденсатор.

Список литературы

1 Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. — Ленинград: Химия, 1987. –576с.

2. Основные процессы и аппараты химической технологии: Пособие по проектированию/ под ред. Ю.И. Дытнерского.—М.: Химия, 1983. —272с.

3. Справочник химика. М.—Л., Химия, т. III, 1962, 1006с.

4. Воробьева Г.Я. Коррозионная стойкость материалов в агрессивных средах химических производств. Изд. 2-е. М.: Химия, 1975. 816 с.

5. Викторов М.М. Методы вычисления физико-химических величин и прикладные расчеты. Л. : Химия, 1977. 360 с.

6. Чернышов А.К., Поплавский К.Л., Заичко Н.Д. Сборник номограмм для химико-технологических расчетов. Л.: Химия 1974. 200 с.

список литературы

Похожие записи