Пример готовой курсовой работы по предмету: Математические методы и моделирование
Введение
Краткая характеристика математических методов при исследовании экономических систем
Линейное программирование
Решение задач линейного программирования в графическом виде на плоскости
Решение задач линейного программирования с использованием симплекс-таблицы
Особенности задач линейного программирования
Литература
Содержание
Выдержка из текста
Цель исследования — на основе анализа научно-методической, учебной литературы, изучения и обобщения педагогического опыта экспериментально проверить методику повышения мотивации к изучению математики у школьников.
Наиболее важным помощником становятся компьютерные информационные системы поддержки управленческих решений, которые позволяют смоделировать ситуацию и выбрать наилучший план действий. Использование методов математического моделирования и принятие на их основе обоснованных решений по управлению деятельностью предприятия является конкурентным преимуществом предприятия по отношению к предприятиям, действующим в тех же сегментах рынка и не использующим современные экономико-математические методы в управлении.
В курсовой работе рассмотрен пример решениятранспортной задачи, в которой нахождение начального опорного плана осуществляется методом двойного предпочтения.Цель курсовой работы: закрепить теоретические сведения и приобрести практические навыки решения транспортной задачи методом двойного предпочтения. Предметом работы является решение транспортной задачи.
Обучение решению текстовых задач является ключевой проблемой в течение всего курса обучения математики, и это подтверждается результатами Единого Государственного Экзамена по математике. Менее
50. детей справляются с решением текстовых задач. Тем более важно начать обучение решению текстовых задач в начальных классах
Любая задача транспортного типа, как задача линейного программирования, может быть решена симплекс-методом, однако матрица системы ограничений транспортных задач весьма своеобразна, в связи с чем, разработаны более эффективные вычислительные методы.Цель выпускной квалификационной работы — решение базовой оптимизационной задачи Коммивояжёра методом ветвей и границ и реализация этого алгоритма в среде программирования Delphi.3) сделать обзор методов решения для задачи Коммивояжёра.
Цель предоставленной работы: рассмотреть методику работы над задачами, которые решаются способом формирования уравнений, и разработать рекомендации согласно обучения учащихся, которые помогут отыскать пути постановки проблемы и решения задачи с помощью составления уравнений.
В данной курсовой работе будет рассмотрена разработка программы по решению приведенной задачи средствами языка программирования C++.
Отдельные направления дискретной математики получили рождение в глубокой древности, но наиболее интенсивное развитие она получила в последнее столетие. В настоящее время знание дискретной математики необходимо специалистам в различных областях деятельности.
Объект исследования – экономико-теоретические проблемы практическо-го применения методов математического моделирования в экономике, которые связаны в первую очередь с процессом построения моделей и реализацией эта-пов процесса с применением информационных технологий для выработки опти-мальных управленческих решений.
Переход к вариационной постановке позволяет ослабить ограничения на гладкость искомого решения, при этом естественным образом вводится понятие обобщенного решения. Соответствующие вариационные задачи состоят в минимизации выпуклого функционала на выпуклом замкнутом множестве и, тем самым, являются задачами на условный экстремум. Исследования по вариационным методам в настоящее время широко и активно разрабатываются специалистами по дифференциальным уравнениям, механике сплошной среды, математической экономике.
Литература
1.Абчук В.А. Экономико — математические методы. – СПб., Союз, 1999.
2.Багриновский К.А., Матюшок В.М. Экономико – математические методы и модели. – М.: РУДН, 1999.
3.Гаркас В.А. Использование VS Excel и VBA в экономике и финансах. – СПб. , 1999.
4.Горбовцов Г.Я. Методы оптимизации и: Учебно – практическое пособие. – М.: МЭСИ, 2000.
5.Горчаков А.А., Орлова И.В. Компьютерные экономико – математические модели. – М.: ЮНИТИ, 1995.
6.Жданов С.А. Экономические модели и методы в управлении. – М.: ДиС, 1998.
7.Зайцев М.Г. Методы оптимизации управления для менеджеров. Компьютерно – ориентированный подход: Учеб. Пособие. – М.: Дело, 2002.
8.Замков О.О., Толтопятенко А.В., Черемных Ю.П. Математические методы в экономике: Учебник. – М.: ДИС, 1997.
9.Касимов Ю.Ф. Основы теории оптимального портфеля ценных бумаг. – М.ИИД «Филинъ», 1998.
10.Кремер Н.Ш. Исследование операций в экономике. – М.: ЮНИТИ, 1997.
11.Мельник М.М. Экономико – математические методы в планировании и управлении материально – техническим снабжением. – М.: Высшая школа, 1990.
12.Орлова И.В. Экономико – математические методы и модели. Выполнение расчетов в среде Excel. Практикум. – М.: Финстатинформ, 2000.
13.Орлова И.В., Половников В.А., Федосеева Г.В. Курс лекций по экономико – математическому моделированию. – М.: Экономическое образование, 1993.
14.Солодовников А.С., Бабайцев В.А., Браилов А.В. Математика в экономике: Учебник. В 2-х частях. Ч.1. –М.: Финансы и статистика, 1999.
15.Уотшем Т. Дж., Паррамоу К. Количественные методы в финансах. – М.: Финансы, ЮНИТИ, 1999.
16.Федосеев В.А., Гармаш А.Н., Дайтбегов Д.М., Орлова И.В., Половников В.А. Экономико – математические методы и прикладные модели: Учеб. Пособие для вузов/ Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999.
17.Федосеев В.В., Гармаш А.Н. и др. Экономико – математические методы и прикладные модели. – М.: ЮНИТИ, 1999.
18.Хазинова Л.Э. Математическое моделирование в экономике. – М.: БЕК, 1998.
19.Шипин Е.В., Чхартиневили А.Г. Математические методы и модели в управлении. – М.: Дело, 2000.
20.Эддоус М., Стенсфилд Р. Методы принятия решения. – М.: ЮНИТИ, 1997.
21.Экономико – математические методы и прикладные модели: Учебное пособие для вузов/ Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999
список литературы