Согласно требованиям СП 63.13330.2018, расчетное сопротивление бетона сжатию $R_{\text{b}}$ для широко используемого в гражданском строительстве тяжелого бетона класса В25 принимается всего 14,5 МПа. Это значение, скорректированное коэффициентом надежности $\gamma_{\text{b}}$, подчеркивает принципиальное отличие расчетного проектирования от прочностных характеристик, заявленных классом, и обязывает инженера-проектировщика строго следовать методу предельных состояний для обеспечения гарантированной безопасности конструкции.
Введение в Курсовой Проект и Нормативная База
Курсовая работа по дисциплине «Железобетонные и каменные конструкции» является фундаментальным этапом подготовки инженера-строителя. Ее целью становится не просто выполнение расчетов, но формирование целостного представления о взаимосвязи между несущей способностью, эксплуатационной пригодностью и долговечностью сборного железобетонного каркаса, поскольку именно этот комплекс характеристик определяет успешность всего проекта.
Актуальность работы обусловлена необходимостью строгого следования действующей нормативной базе Российской Федерации. Главным регулятором в области проектирования ЖБК выступает СП 63.13330.2018 «Бетонные и железобетонные конструкции. Основные положения». Этот документ, являющийся актуализированной редакцией СНиП 52-01-2003, регламентирует расчеты по методу предельных состояний.
Метод предельных состояний включает две ключевые группы:
- Первая группа (по несущей способности): Проверка прочности, устойчивости формы и положения конструкции. Расчеты гарантируют, что конструкция не разрушится под действием расчетных нагрузок.
- Вторая группа (по эксплуатационной пригодности): Проверка трещиностойкости, допустимой ширины раскрытия трещин и деформативности (прогибов). Расчеты обеспечивают нормальную эксплуатацию здания.
Курсовой проект должен включать расчетно-пояснительную записку (РПЗ) с детальным пошаговым обоснованием всех инженерных решений и графическую часть (чертежи КЖ), содержащую конструктивные схемы, узлы сопряжений и спецификации арматуры. Принятие решений без должного обоснования может привести к фатальным ошибкам, поэтому детальное понимание расчета по первой группе критически важно.
Исходные Данные и Расчетные Характеристики Материалов
Инженерное проектирование начинается с правильного выбора материалов и точного определения их расчетных характеристик. Любая ошибка на этом этапе влечет за собой неверное определение сечений и площади армирования, в конечном итоге ставя под угрозу всю конструкцию.
Выбор классов бетона и арматуры
Для сборных конструкций гражданских зданий обычно применяют тяжелый бетон. Выбор класса прочности определяется требованиями к несущей способности, условиями эксплуатации и долговечности.
Обоснование выбора:
- Класс бетона по прочности на сжатие (В): Для элементов каркаса (плиты, ригели, колонны) распространенным выбором является В25. Класс В25 означает, что гарантированная кубиковая прочность бетона с обеспеченностью 0,95 составляет 25 МПа.
- Класс арматуры (А): В качестве рабочей арматуры часто используют горячекатаную периодического профиля класса А400 (А3) или А500 (А3). Для поперечной и конструктивной арматуры могут применяться классы А240 или В500.
Определение расчетных сопротивлений
Расчетные сопротивления ($R$) — это нормативные сопротивления материалов, деленные на соответствующие коэффициенты надежности. Эти значения используются при расчете по первой группе предельных состояний.
| Материал | Характеристика | Нормативное сопротивление ($R_{\text{n}}$) | Коэффициент надежности ($\gamma$) | Расчетное сопротивление ($R$) |
|---|---|---|---|---|
| Бетон В25 (сжатие) | $R_{\text{b}}$ | 18,5 МПа | $\gamma_{\text{b}} \approx 1,28$ | 14,5 МПа |
| Бетон В25 (растяжение) | $R_{\text{bt}}$ | 1,35 МПа | $\gamma_{\text{b}} \approx 1,28$ | 1,05 МПа |
| Арматура А500 (растяжение/сжатие) | $R_{\text{s}}$, $R_{\text{sc}}$ | 500 МПа | $\gamma_{\text{s}} = 1,15$ | 435 МПа |
Методологическое замечание: Важно помнить, что коэффициенты надежности $\gamma_{\text{b}}$ и $\gamma_{\text{s}}$ всегда больше единицы, поскольку они уменьшают несущую способность материалов, обеспечивая запас прочности против возможных отклонений фактической прочности от нормативной. Этот запас — гарантия того, что даже при худшем сценарии конструкция сохранит свою целостность.
Методология Сбора и Комбинации Нагрузок (СП 20.13330)
Определение расчетных усилий, действующих на элементы сборного каркаса, строго регулируется СП 20.13330 «Нагрузки и воздействия».
Классификация и расчетные значения нагрузок
Нагрузки классифицируются по продолжительности действия и источнику возникновения:
- Постоянные нагрузки ($G$): Действуют на протяжении всего срока службы (собственный вес конструкций, вес ограждающих конструкций, вес грунта).
- Длительные временные нагрузки ($Q_{\text{l}}$): Действуют долгое время (вес стационарного оборудования, длительная часть полезной нагрузки).
- Кратковременные временные нагрузки ($Q_{\text{s}}$): Действуют ограниченное время (полезная нагрузка на перекрытие, снеговая, ветровая).
Расчетные значения нагрузок определяются как произведение нормативного значения ($F_{\text{норм}}$) на коэффициент надежности по нагрузке ($\gamma_{\text{f}}$):
F_расч = F_норм · γf
| Тип нагрузки | Источник | Типовое $\gamma_{\text{f}}$ |
|---|---|---|
| Постоянная | Собственный вес ЖБК | 1,1 |
| Постоянная | Давление грунтов | 1,15 |
| Кратковременная | Полезная нагрузка (если $Q_{\text{n}} \ge 2,0 \text{ кПа}$) | 1,2 |
| Кратковременная | Нагрузки при монтаже | 1,25–1,60 |
Формирование расчетных сочетаний
Расчет по первой группе предельных состояний (прочности) всегда выполняется для наиболее неблагоприятного сочетания нагрузок. Почему это так важно? И что из этого следует? Если не проверить самый неблагоприятный сценарий, конструкция может разрушиться в момент максимальной нагрузки, превышающей расчетную.
Основное сочетание нагрузок включает:
- Все постоянные нагрузки ($G$).
- Все длительные временные нагрузки ($Q_{\text{l}}$).
- Одну кратковременную нагрузку, которая является главной ($Q_{\text{s1}}$), с коэффициентом сочетания $\psi_{\text{t1}} = 1,0$.
- Остальные кратковременные нагрузки ($Q_{\text{s2}}, Q_{\text{s3}}…$) с понижающими коэффициентами сочетания $\psi$.
Пример комбинации усилий ($N, M, Q$) в сечении:
F = ΣG + ΣQl + ψt1 · Qs1 + ψt2 · Qs2 + ψt3 · Qs3 + &dots;
Согласно СП 20.13330, коэффициенты сочетания $\psi$:
- Для основной длительной нагрузки: $\psi_{\text{l1}} = 1,0$.
- Для второй и последующих длительных нагрузок: $\psi_{\text{l2…}} = 0,95$.
- Для основной кратковременной нагрузки: $\psi_{\text{t1}} = 1,0$.
- Для второй кратковременной нагрузки: $\psi_{\text{t2}} = 0,9$.
- Для третьей и последующих кратковременных нагрузок: $\psi_{\text{t3…}} = 0,7$.
Расчет Прочности Изгибаемых Элементов (Ребристая Плита и Неразрезной Ригель)
Изгибаемые элементы (плиты, ригели) рассчитываются на действие изгибающего момента ($M$) и поперечной силы ($Q$) по первому предельному состоянию.
Расчет по нормальным сечениям (по прочности на момент $M$)
Целью является определение необходимой площади продольной растянутой арматуры ($A_{\text{s}}$) для восприятия момента $M$.
Алгоритм расчета:
- Определение расчетного момента $M$ в наиболее нагруженном сечении (для неразрезного ригеля — в пролете и над опорами).
- Определение высоты сжатой зоны бетона ($x$) из условия равновесия проекций сил на продольную ось: силы в растянутой арматуре равны силам в сжатом бетоне.
R_s · A_s = R_b · b · x
- Проверка условия пластического разрушения (отсутствие хрупкости):
Критически важный момент — ограничение высоты сжатой зоны. Если $x$ слишком велико, элемент разрушится хрупко (по сжатому бетону) до достижения арматурой предела текучести.
x ≤ ξR · h0
Где $h_{\text{0}}$ — рабочая высота сечения; $\xi_{\text{R}}$ — граничная относительная высота сжатой зоны. Для тяжелого бетона и арматуры А500, согласно СП 63.13330, $\xi_{\text{R}} \approx 0,538$.
- Определение требуемой площади арматуры ($A_{\text{s}}$): Из условия равновесия моментов:
M ≤ R_b · b · x (h0 - 0,5x)
Путем решения системы уравнений определяется требуемая $A_{\text{s}}$, которая затем переводится в количество и диаметр арматурных стержней.
Расчет по наклонным сечениям (по прочности на поперечную силу $Q$)
Расчет на поперечную силу $Q$ определяет необходимость и параметры поперечной арматуры (хомутов).
Условие прочности наклонного сечения: Поперечная сила от внешней нагрузки ($Q$) не должна превышать сумму сил, воспринимаемых бетоном ($Q_{\text{b}}$) и поперечной арматурой ($Q_{\text{sw}}$):
Q ≤ Q_b + Q_sw
- Определение силы, воспринимаемой бетоном ($Q_{\text{b}}$):
Q_b = (R_bt · b · h0² / c) · φb2
Где $c$ — проекция наиболее опасного наклонного сечения (обычно принимается равной $2h_{\text{0}}$); $b$ — ширина сечения.
Ключевой аспект — коэффициент $\varphi_{\text{b2}}$: Этот коэффициент учитывает влияние продольной арматуры в растянутой зоне и определяется по формуле:
φb2 = 1 + (α · μs) / (2 + α · μs)
Где $\alpha = E_{\text{s}}/E_{\text{b}}$ — отношение модулей упругости арматуры и бетона; $\mu_{\text{s}}$ — процент продольного армирования в растянутой зоне. Чем больше продольной арматуры, тем выше прочность наклонного сечения.
Важно помнить об ограничениях $Q_{\text{b}}$ (СП 63.13330), чтобы избежать разрушения сжатой зоны бетона:
0,5 · R_bt · b · h0 ≤ Q_b ≤ 2,5 · R_bt · b · h0
- Определение требуемой поперечной арматуры ($Q_{\text{sw}}$): Если $Q > Q_{\text{b}}$, необходимо установить поперечную арматуру.
Q_sw = φsw · q_sw · c
Где $q_{\text{sw}}$ — усилие в поперечной арматуре на единицу длины, определяющее шаг хомутов. Следует понимать, что правильный шаг хомутов — это не просто конструктивное требование, а прямое средство предотвращения внезапного сдвигового разрушения.
Расчет Колонны на Внецентренное Сжатие: Учет Влияния Гибкости
Колонны (внецентренно сжатые элементы) воспринимают продольную силу $N$ и изгибающий момент $M$. Расчет усложняется необходимостью учета продольного изгиба (увеличения момента за счет прогиба колонны).
Определение расчетного эксцентриситета
Начальный эксцентриситет $e_{\text{0}} = M/N$ должен быть скорректирован с учетом двух факторов:
- Случайный эксцентриситет ($e_{\text{a}}$): Неизбежные отклонения при изготовлении и монтаже. Согласно СП, $e_{\text{a}}$ принимается не менее:
- 1/600 длины элемента ($l_{\text{0}}$),
- 1/30 высоты сечения ($h$),
- 10 мм.
- Влияние прогиба (коэффициент $\eta$): Учитывается при достаточно высокой гибкости.
Общий расчетный эксцентриситет:
e_tot = η · e0 + ea
Расчет коэффициента влияния прогиба ($\eta$)
Влияние продольного изгиба учитывается, если гибкость элемента $l_{\text{0}}/i$ превышает 14 (или $l_{\text{0}}/h > 5$ для прямоугольного сечения). Как можно игнорировать этот эффект, если именно продольный изгиб может увеличить момент в колонне на десятки процентов, вызывая преждевременное разрушение?
Коэффициент $\eta$ определяется через условную критическую силу $N_{\text{cr}}$:
η = 1 / (1 - N / N_cr)
Где $N$ — расчетная продольная сила.
Условная критическая сила $N_{\text{cr}}$:
N_cr = (π² · D) / l0²
Где $l_{\text{0}}$ — расчетная длина колонны; $D$ — жесткость сечения, определяемая с учетом трещинообразования и ползучести бетона.
Проверка прочности нормального сечения
Прочность колонны проверяется на действие силы $N$ с эксцентриситетом $e_{\text{tot}}$.
Условие равновесия сил:
N ≤ R_b · b · x + R_sc · A's - R_s · A_s
Где $A’_{\text{s}}$ — площадь арматуры в сжатой зоне; $A_{\text{s}}$ — площадь арматуры в растянутой зоне.
Расчет сводится к определению положения нейтральной оси ($x$) и проверке условия равновесия моментов внутренних сил (от $R_{\text{b}}, R_{\text{sc}}$ и $R_{\text{s}}$) относительно центра тяжести сечения или растянутой арматуры, которые должны уравновешивать внешний момент $N \cdot e_{\text{tot}}$.
Расчет Фундамента Мелкого Заложения: Проверка на Продавливание
Проектирование фундамента начинается с определения его размеров, а заканчивается проверкой прочности на местные напряжения, в частности, на продавливание.
Определение площади подошвы
Размеры фундамента (площадь подошвы $A_{\text{f}}$) определяются исходя из условия ограничения среднего давления на грунт ($p$) под подошвой фундамента до уровня расчетного сопротивления грунта ($R$):
A_f ≥ (N_норм + G_фунд) / R
Где $N_{\text{норм}}$ — нормативная продольная сила от вышележащей конструкции; $G_{\text{фунд}}$ — нормативный вес фундамента и обратной засыпки. Расчет по нормативным нагрузкам необходим для ограничения деформаций грунта (второе предельное состояние по грунту).
Расчет прочности на продавливание
Продавливание — это разрушение плиты фундамента (или плиты перекрытия) сосредоточенной силой от колонны или опоры.
Условие прочности на продавливание:
F ≤ F_b,ult
Где $F$ — продавливающая сила (обычно $N$ без учета веса фундамента в пределах расчетной пирамиды); $F_{\text{b,ult}}$ — предельное усилие, воспринимаемое бетоном наклонного сечения (при отсутствии поперечной арматуры).
F_b,ult = R_bt · A_b
Где $R_{\text{bt}}$ — расчетное сопротивление бетона растяжению.
Ключевой элемент — площадь расчетного поперечного сечения $A_{\text{b}}$:
Площадь $A_{\text{b}}$ определяется по расчетному контуру продавливания $u$, который находится на расстоянии $h_{\text{0}}/2$ от граней колонны (или опоры), и рабочей высоте $h_{\text{0}}$.
A_b = u · h0
Для квадратной колонны со стороной $c$:
u = 4(c + h0)
Если фундамент не проходит проверку на продавливание, необходимо увеличить рабочую высоту $h_{\text{0}}$ или предусмотреть конструктивную поперечную арматуру. Проектировщик должен понимать, что продавливание — это зональная, высоконагруженная проблема, требующая особого внимания к деталям армирования, в отличие от общего расчета на изгиб.
Требования к Эксплуатационной Пригодности и Долговечности (Второе Предельное Состояние)
Проектирование ЖБК не завершается расчетом прочности. Эксплуатационная пригодность, регулируемая второй группой предельных состояний, гарантирует, что конструкция будет служить долго и не потеряет эстетических и функциональных качеств.
Расчет трещиностойкости и ширины раскрытия трещин
Трещиностойкость является критически важным параметром для долговечности, особенно в агрессивных средах.
Категории трещиностойкости (СП 63.13330):
- Категория 1: Трещины не допускаются (например, для конструкций, расположенных ниже уровня грунтовых вод).
- Категория 2: Ограниченное непродолжительное раскрытие трещин (под действием полной комбинации нагрузок).
- Категория 3: Ограниченное продолжительное раскрытие трещин (под действием постоянных и длительных временных нагрузок).
Проверка ширины раскрытия трещин ($a_{\text{crc}}$):
Расчетная ширина раскрытия трещин $a_{\text{crc}}$ не должна превышать предельно допустимого значения $[a_{\text{crc,max}}]$:
a_crc ≤ [a_crc,max]
Предельно допустимые значения (для арматуры классов А240–А600 в неагрессивной среде):
- Для продолжительного раскрытия (Категория 3): 0,3 мм.
- Для непродолжительного раскрытия (Категория 2): 0,4 мм.
Методологическое примечание: Расчет $a_{\text{crc}}$ производится на основании нормативных нагрузок, но с использованием коэффициентов сочетания $\psi$ для второй группы предельных состояний, которые отличаются от коэффициентов для первой группы.
Расчет по деформациям (прогибам)
Прогиб ($\delta$) изгибаемых элементов (плит, ригелей) должен быть ограничен, чтобы не повредить не несущие конструкции (перегородки, облицовку) и не вызвать неэстетичные деформации.
Условие ограничения прогиба:
δ ≤ [δ]
Предельно допустимые прогибы $[\delta]$ устанавливаются СП 20.13330 (Приложение Д) в виде доли пролета $l$:
| Назначение элемента | Типичное ограничение |
|---|---|
| Плиты и ригели, открытые для обзора (при $l \ge 6$ м) | $l/200$ |
| Элементы, на которых расположены перегородки и элементы, подверженные растрескиванию | $l/150$ |
Прогибы рассчитываются на действие нормативных нагрузок с учетом длительного воздействия (ползучести бетона) и модулей упругости материалов.
Конструктивные требования к армированию
Даже при выполнении всех расчетов по несущей способности, необходимо соблюдать минимальные требования к армированию, обеспечивающие конструктивную целостность и предотвращающие хрупкое разрушение от температурных и усадочных воздействий.
Минимальный процент продольного армирования ($\mu_{\text{s,min}}$):
μs = 100 · A_s / (b · h0)
- Изгибаемые элементы (плиты, ригели): $\mu_{\text{s,min}}$ не менее 0,1%.
- Внецентренно сжатые элементы (колонны):
- При низкой гибкости ($l_{\text{0}}/h \le 5$): $\mu_{\text{s,min}}$ не менее 0,1%.
- При высокой гибкости ($l_{\text{0}}/h \ge 25$): $\mu_{\text{s,min}}$ не менее 0,25%.
Важное требование СП: Если процент армирования ($\mu_{\text{s}}$) менее 0,05% (отнесенный к площади сечения $b \cdot h$), конструкция классифицируется как бетонная, а не железобетонная, что накладывает дополнительные ограничения на ее применение. Только адекватное армирование позволяет реализовать пластические свойства, заложенные в расчетной модели.
Оформление Расчетно-Пояснительной Записки и Чертежей
Успешная курсовая работа требует не только корректных расчетов, но и их грамотного представления.
Расчетно-Пояснительная Записка (РПЗ) должна содержать:
- Введение: Цель, задачи, краткое описание объекта, ссылка на используемую нормативную базу (СП 63.13330.2018, СП 20.13330.2016).
- Исходные данные: Геометрия здания, характеристики грунтов, классы бетона и арматуры, нормативные нагрузки.
- Расчетная часть:
- Сбор нагрузок и определение расчетных сочетаний.
- Статический расчет (расчетные схемы, эпюры $M, Q, N$).
- Детальный расчет прочности (1-я группа) для каждого элемента (плита, ригель, колонна, фундамент) с приведением всех формул и подстановок.
- Расчет по 2-й группе предельных состояний (трещиностойкость, прогибы).
- Конструктивная часть: Описание принятых конструктивных решений, спецификация арматуры.
- Заключение.
Графическая часть (Чертежи КЖ):
Чертежи должны выполняться по стандартам СПДС (Система проектной документации для строительства) и включать:
- Схемы расположения элементов сборного каркаса.
- Рабочие чертежи армирования ригелей и колонн (КЖ).
- Схемы армирования фундаментов.
- Деталировку узлов сопряжений сборных элементов.
- Спецификации арматуры и ведомости расхода стали.
Список использованной литературы
- СНиП 52-01-2003. Бетонные и железобетонные конструкции. Основные положения. Москва: ГУП НИИЖБ Госстрой России, 2004.
- СНиП 2.01.07-85*. Нагрузки и воздействия. Москва: Минстрой России, ГУП ЦПП, 2009.
- СП 52-101-2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры. Москва: ГУП НИИЖБ Госстроя России, 2004.
- Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (к СП 52-101-2003). Москва: ОАО «ЦНИИПромзданий», 2005.
- Байков В.Н., Сигалов Э.Е. Железобетонные конструкции (общий курс). Москва: СИ, 1991.
- Справочник проектировщика промышленных, жилых и общественных зданий и сооружений. Расчетно-теоретический: в 2 кн. Кн. 1. 2-е изд., перераб. и доп. / под ред. А.А.Уманского. Москва: Стройиздат, 1972.
- Железобетонные конструкции: учебное пособие к курсовому проекту №1 / Сост.: В.И. Елисеев, А.А. Веселов, А.В. Сконников. Санкт-Петербург: СПбГАСУ, 1992. 80 с.