Содержание

расчет статистических характеристик

Выдержка из текста

Средняя является обещающей характеристикой совокупности единиц по качественно однородному признаку.

В статистике применяются различные виды средних: арифметическая, гармоническая, квадратическая, геометрическая и структурные средние мода и медиана. Средние, кроме моды и медианы, исчисляются в двух формах: простой и взвешенной. Выбор формы средней зависит от исходных данных и содержание определяемого показателя. Наибольшее распространение получила средняя арифметическая, как простая, так и взвешенная.

Средняя арифметическая простая равна сумме значений признака, деленной на их число:

,

где значение признака (вариант);

число единиц признака.

Средняя арифметическая простая применяется в тех случаях, когда варианты представлены индивидуально в виде их перечня в любом порядке или в виде ранжированного ряда.

Если данные представлены в виде дискретных или интервальных рядов распределения, в которых одинаковые значения признака ( ) объединены в группы, имеющие различное число единиц ( ), называемое частотой (весом), применяется средняя арифметическая взвешенная:

Составляем расчетную таблицу 2.1.

Заработная плата, (руб.)Численность рабочих в % к итогуСередина интервала,

5102051010200

10049150

Средняя заработная плата рабочего будет составлять:

руб.

Мода — это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервального ряда определяется по формуле:

Похожие записи