Пример готовой курсовой работы по предмету: Высшая математика
Содержание
Содержание
Введение 3
Теоретические аспекты применения приближённых методов решения нелинейных уравнений 5
Постановка задачи решения нелинейного уравнения 5
Этапы решения уравнения приближёнными числовыми методами 6
Метод половинного деления 9
Метод итераций 11
Примеры практического применения приближённых методов решения нелинейных уравнений 13
Отделение корней 13
Решение уравнение методом половинного деления 14
Решение уравнения методом итераций 18
Заключение 21
Список источников 22
Выдержка из текста
Введение
Принятие управленческих решений на любом уровне – от руководства малого предприятия до органов государственного управления – требует глубокого понимания предметной области.
При этом для экономических объектов характерна сложность, нелинейность и изменчивость происходящих в них процессов, из-за чего интуитивно принимаемые решения и анализ проблем экспертными методами не обоснованы и aprioriне позволяют прогнозировать будущие изменения в объекте управления и адекватно на них реагировать [1].
В отличие от эвристических методов аналитические обеспечивают верифицируемость получаемых в результате их применения моделей и возможность оценки соответствия модели фактическим данным. Поэтому математическое моделирование широко используется для поддержки принятия решений.
При моделировании экономических процессов также важно учитывать их комплексность, из-за чего математическая модель состоит из трудно вычислимых вручную уравнений.
Вычислительные проблемы в период до развития ЭВМ и персональных компьютеров были серьёзным препятствием для развития математического моделирования, но в настоящее время проблему решают автоматически выполняемые вычисления. Особенность компьютерных вычислений заключается в неизбежной дискретности значений чисел, что обусловлено особенностями хранения цифровой информации; кроме того, большинство экономических задач допускают некоторый уровень погрешности, не влияющий на процесс принятия решений.
Поэтому допустимо применение не точных, а приближённых методов вычислений, то есть численных методов. По сути, все компьютерные вычисления представляют собой реализацию применения численных методов.
Список использованной литературы
Список источников
Литература
1. Бабаева Н.С. Приближенные методы решения уравнений // Информатика и образование. 2003. № 6.
2. Бахвалов Н.С., Лапин А.В., Чижонков Е.В. Численные методы в задачах и упражнениях. – М.: Бином. Лаборатория знаний, 2010. – 240 с.
3. Вержбицкий В.М. Основы численных методов. – М.: Высшая школа, 2009. – 848 с.
4. Волгин В.Ф. Сборник упражнений по курсу «Численные методы». – Саров: РФЯЦ-ВНИИЭФ, 2000.
5. Громов Ю.Ю., Татаренко С.И. Введение в методы численного анализа. – Тамбов: Изд-во ТГТУ, 2001
6. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. – СПб.: Лань, 2010. – 400 с.
7. Калиткин Н.Н. Численные методы. – М.: Наука, 1978.
8. Киреев В.И., Пантелеев А.В. Численные методы в примерах и задачах. – М.: Изд-во МАИ, 2000.
9. Копченова Н.В., Марон И.А. Вычислительная математика в примерах и задачах: учебное пособие. – СПб.: Лань, 2009. – 368 с.
10. Корнилов В.С. Как ЭВМ вычисляет квадратный корень. / «В мир информатики» № 36 («Информатика» № 10 / 2004).
11. Кугаенко А.А. Методы динамического моделирования в управлении экономикой: Учебное пособие с компакт-диском / Под ред. П.Е. Кондрашова. – 2-е изд., испр. и доп. — М.: Университетская книга, 2005.
12. Марчук Г.И. Методы вычислительной математики. – М.: Наука, 1989.
13. Охорзин В.А. Прикладная математика в системе MATHCAD: учебное пособие. – СПб.: Лань, 2009. – 352 с
14. Пирумов У.Г. Численные методы: учебное пособие для бакалавров. – М.: Юрайт, 2012. – 201 с.
15. Рябенький В.С. Введение в вычислительную математику. – М.: Физматлит, 2008. – 285 с.
16. Самарский А.А. Введение в численные методы. – СПб.: Лань, 2009. – 288 с.
17. Семёнова Т.И, Шакин В.Н.: Практикум Математический пакет MathCAD в дисциплине «Информатика», Москва, МТУСИ, 2006г.
18. Срочко В.А. Численные методы. Курс лекций. – СПб.: Лань, 2010. – 208 с.
19. Тимофеева Л.А. Численные методы решения задач на ЭВМ // Информатика и образование. 2003. № 12.
Интернет-источники
20. Введение в математическое моделирование // НОУ Интуит [Электронный ресурс]) Режим доступа http://www.intuit.ru/studies/courses/2260/156/info свободный (дата обращения 15.11.2013
21. Основы численных методов. [Электронный ресурс]Режим доступа http://www.exponenta.ru/educat/systemat/levitsky/index свободный (дата обращения: 15.11.2013)