Пример готовой курсовой работы по предмету: Физика
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ 3
УДАРНЫЕ ВОЛНЫ В ФИЗИКЕ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ 6
1. Ударные волны в газах 6
2. Особенности ударно-волновых процессов в конденсированных средах 8
3. Методы исследований 14
ЗАКЛЮЧЕНИЕ 22
СПИСОК ЛИТЕРАТУРЫ 24
Содержание
Выдержка из текста
Методы исследования. В работе применялись теоретические (абстрагирование, анализ и синтез, идеализация, индукция и дедукция, мысленное моделирование, восхождение от абстрактного к конкретному и др.) и эмпирические исследования.
Чтобы решить поставленные задачи, я буду использовать современные энциклопедии (в частности БСЭ), учебники для высших учебных заведений по дисциплине «Безопасность в чрезвычайных ситуациях», справочники.
Учащиеся должны уметь: решать задачи на расчет магнитной индукции, силы Ампера, силы Лоренца; [рассчитывать период обращения, радиус окружности, описываемой заряженной частицей, влетающей в однородное магнитное поле перпендикулярно линиям магнитной индукции].
Ударная волна является одним из основных поражающих факторов ЧС. Под устойчивостью функционирования объекта понимается его способность предупреждать возникновение аварий и катастроф, противостоять воздействию их поражающих факторов в целях предотвращения или ограничения угрозы жизни и здоровью персонала, населения, снижения материального ущерба.
Изучение сегнетоэлектриков в последние десятилетия заняло одно из ведущих мест в исследованиях по физике конденсированного состояния ве-щества. Они используются для изготовления радиотехнических конденсаторов, пьезо-электрических преобразователей и фильтров и являются практически един-ственными материалами для гидроакустических устройств, пироэлектриче-ских приемников инфракрасного излучения, в устройствах обработки и хра-нения информации, в радио-, акусто- и оптоэлектронике. Сегнетоэлектрики особенно эффективны при работе в условиях, требующих высокой радиаци-онной стойкости.
Совсем недавно в школьных учебниках на уровне молекул и атомов появилось понятие "валентность"; на уровне ядер — понятие дефекта массы, которое позволило рассматривать легкие (даже без массы) объекты построенными из более тяжелых частиц. Дефект масс для ядер сказывается в том, что масса ядер меньше массы нуклонов (нейтронов и протонов) в ядрах, что обусловливает их связь.
В 30-е годы XX в. было сделано другое важное открытие, — было доказано (экспериментально), что между веществом и полем не существует непроходимой границы, т.е. что в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля — свойства корпускул (дуализм волны и частицы).
До этого физики считали, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а энергия поля— волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов ученые вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.
Атомы люминофора поглощают фиолетовый и ультрафиолетовый свет, переходя из основного в возбужденное состояние. Однако, обратный переход из возбужденного в основное состояние происходит не прямо (тогда бы люминофор светился фиолетовым и ультрафиолетовым светом), а через промежуточные энергетические уровни. В результате на один поглощенный коротковолновый фотон приходится два и более высвеченных фотона с большей длиной волны.
Спектры от краев полоски окажутся не скомпенсированными, поэтому верхний край окрасится в фиолетовый цвет, а нижний в красный.
Водородную связь относят к числу слабых химических взаимодействий. Энергия водородной связи обычно лежит в пределах от
1. до
3. кДж/моль, хотя иногда она достигает и сотен кДж/моль. Энергии обычных химических связей (ковалентных и ионных), как правило, заметно превышают
15. кДж/моль, достигая, например, для молекул азота или оксида углерода величин
90. кДж/моль и более. Тем не менее, за последние полвека появилось четкое понимание исключительной роли слабых взаимодействий, прежде всего роли водородных связей в стабилизации конденсированных состояний многих простых молекулярных систем, например воды, и, что самое существенное, в стабилизации биополимеров (нуклеиновых кислот, белков).
Водородные связи позволяют полимерным цепям соединяться в специфические трехмерные структуры, приобретающие при этом функциональную биологическую активность, структуры, с одной стороны достаточно прочные (за счет образования большого числа водородных связей), а с другой достаточно чутко реагирующие на изменение внешних условий (например, приближение той или иной молекулы) именно из-за того, что эти взаимодействия являются слабыми. Разрыв таких связей лишает белки или нуклеиновые кислоты их биологических функций. Отсюда, в частности, видна исключительно важная роль водородных связей, которую они играют в биологических процессах на молекулярном уровне. Понятно и то важное значение исследований и понимания природы водородных связей, которым в последние десятилетия было уделено столь пристальное внимание ученых различных направлений.
Дифракционная решетка, имеющая порядок 0,03 мм, освещается светом с длиной волны
60. нм.
На какую длину волны в спектре второго порядка накладывается фиолетовая линия (λ=0,4 мкм) спектра третьего порядка?
Список источников информации
1. Канель Г.И. Ударные волны в физике конденсированного состояния/ Г.И.Канель, В.Е.Фортов, С.В.Разоренов // УФН, 2007, том 177, № 8, С. 809– 830
2. . Физика взрыва / Баум Ф.А., Орленко Л.П., Станюкович К.П. и др – М.: Наука, 1975.
3. Дерибас А.А. Физика упрочнения и сварки взрывом. – Новосибирск: Наука, Сиб. отд-ние, 1972.
4. Кинеловский С.А. Схождение кольца к центру под действием продуктов взрыва / Кинеловский С.А., Матюшкин Н.И., Тришин Ю.А.// Динамика сплошной среды. – Вып. 5 / Ин-т гидродинамики СО АН СССР. – Новосибирск, 1970. – С. 105– 114.
5. Тришин Ю.А. Ускорение твердых тел кумулятивными струями / Тришин Ю.А. // ПМТФ. – 1980. – № 5. – С. 145– 149.
6. Тришин Ю.А. О метании слоистых тел с помощью кумулятивной струи / Тришин Ю.А., Фоминых А.Г. // Механика быстропротекающих процессов. – Вып. 62. – Новосибирск, 1983. – С. 146– 151.
7.
8. a.
9. Физика ударно-волновых и кумулятивных явлений: Метод. указ. / Сост. Ю.А. Тришин. – Новосибирск: Изд-во НГТУ, 2001. – Ч. II. – С. 5 – 7.
10. Ударные волны и экстремальные состояния вещества / ред . В Е Фортова , Л В Альтшулера , Р Ф Трунина , А И Фунтикова -М. : Наука , 2000. 156 с.
11. Канель Г И. ФТТ / Канель Г И, Разоренов С.В. // 43 839, 2001 р.
12. Physics shock wave in a condensed medium / Kanel G. I., Razorenov S. V., Baumung К , Singer J .// Appl. Phys. 9 0 136 .2001
13. Ударно- волновые явления в конденсированных средах / Канель Г. И., Разоренов С. В., Уткин А. В., Фортов В. Е. — М. : Янус-К , 1996
14. Методы исследования свойств материалов при интенсивных динамических загрузках/ Под ред . M В Жерноклетова — Саров : РФЯ Ц — ВНИИЭФ , 2003
список литературы