Пример готовой курсовой работы по предмету: Высшая математика
Содержание
Оглавление
Введение 3
1 Формула трапеций 5
1.1 Вывод основной формулы 5
1.2 Геометрический смысл формулы трапеций 6
1.3 Оценка погрешностей 7
2 Применение формулы трапеций для вычисления определенных интегралов 10
Заключение 15
Список используемой литературы 17
Выдержка из текста
Введение
В приложениях математики часто приходиться сталкиваться с вычислением определенного интеграла
I=∫_a^b▒f(x)dx (1)
от некоторой интегрируемой на отрезке [a;b]
функции f. Существует точный метод вычисления определенных интегралов, который заключается в применении формулы Ньютона-Лейбница
∫_a^b▒f(x)dx=F(a)-F(b)
где F(x) – первообразная функции f(x).
Однако эта формула не всегда применима и часто приходиться сталкиваться с «проблемными» интегралами.
К таким проблемным интегралам можно отнести интегралы от функций, первообразные которых не выражаются через элементарные функции. Часто бывает, что первообразные подынтегральных функций существуют, но сами интегралы трудно вычислимы.
Получается, что в подобных ситуациях применение формулы Ньютона-Лейбница либо невозможно, либо весьма затруднительно. Тем не менее, существуют приближенные методы вычисления определенных интегралов. И эти методы зачастую позволяют получить значение интеграла с высокой точностью.
Выделяют два класса приближенных методов вычисления определенных интегралов. Первый включает в себя так называемые аналитические методы, второй – численные. Аналитические методы в основном сводятся к замене подынтегральной функции некоторой другой функцией, чью производную нетрудно отыскать. Численные методы заключаются в том, что приближение к интегралу отыскивается по числовому выражению на основе значений подынтегральной функции на конечном множестве точек из отрезка интегрирования. Этот способ вычислений также называют механической квадратурой, соответствующие приближенные формулы называют формулами численного интегрирования или квадратурными формулами, а используемые при этом аргументы функции — узлами квадратуры.
В этой работе рассматривается численный метод вычисления определенных интегралов, основанный на применении формулы трапеции. При этом для получения квадратурных формул подынтегральная функция на частичных отрезках заменяется соответствующими интерполяционными многочленами.
Прейдем к формулировке целей и задач работы.
Цель работы: изучить численный метод вычисления определенных интегралов, основанный на формуле трапеции.
Задачи работы: получить формулу трапеций, выяснить ее геометрический смысл, оценить погрешность метода, а также применить формулу трапеций для вычисления определенных интегралов.
Список использованной литературы
Список используемой литературы
1. Бахвалов Н.С. Численные методы. — М.: Наука, 1973.
2. Березин И. С, Жидков Н.П. Методы вычислений. Т. 1. — М.: Наука,
1966; Т. 2. — М.: Физматгиз, 1962.
3. Бохан К. А., Егорова И. А., Лащенов К.В. Курс математического анализа. Т. 1. — М.: Просвещение, 1972.
4. Бохан К. А., Егорова И. А., Лащенов К. В. Курс математического анализа. Т. 2. — М.: Просвещение, 1972.
5. Вычислительная математика / Н.И.Данилина, Н.С.Дубровская,
О. П. Квант, ГЛ. Смирнов. — М.: Высшая школа, 1985.
6. Демидович Б.П., Марон И.А. Основы вычислительной математики. —
М.: Наука, 1970.
7. В.А. Зорич. Математический анализ. Том 1. – М.: Фазис, 1997
8. Исаков, В.Б. Элементы численных методов: Учебное пособие для студентов, обучающихся по специальности Математика группы Педагогические специал. — М.: Академия, 2003