Содержание

Задача 1

Для сигнализации об аварии установлены три независимо работающих устройства. Вероятность того, что при аварии сработает первое устройство, равна 0,9, второе – 0,95, третье – 0,85.

Найти вероятность того, что при аварии сработает: а) только одно устройство;

б) два устройства;

в) хотя бы одно устройство.

Задача 2

В каждом испытании некоторое событие происходит с вероятностью . Произведено 1600 независимых испытаний. Найти границы для частости, симметричные относительно , которые можно гарантировать с вероятностью 0,95.

Задача 3

На двух станках получают детали одинаковой номенклатуры. Случайные величины и – число бракованных деталей в партиях деталей за смену, произведённых на каждом из станков, – характеризуются следующими законами распределения:

1 2 3

0,3 0,5 0,2

0 1 2

0,6 0,3 0,1

: :

Составить закон распределения случайной величины – общего числа бракованных деталей в объединённой партии деталей, произведённых на двух станках. Найти её математическое ожидание, дисперсию и функцию распределения.

Задача 4

1. В некотором городе по схеме собственно случайной бесповторной выборки было обследовано 80 магазинов розничной торговли из 2500 с целью изучения объема розничного товарооборота. Получены следующие данные: (таблица 1)

Таблица 1

Товарооборот, у.е. Менее 60 60-70 70-80 80-90 90-100 Более100 Итого

Число магазинов 12 19 23 18 5 3 80

Найти:

а) вероятность того, что средний объем розничного товарооборота во всех магазинах города отличается от среднего объема розничного товарооборота, полученного в выборке, но не более, чем на 4 у.е. (по абсолютной величине).

б) границы, в которых с вероятностью 0,98 заключена доля магазинов с объемом розничного товарооборота от 60 до 90 у.е.;

в) объем бесповторной выборки, при которой те же границы для среднего объема розничного товарооборота (см. п. а) можно гарантировать с вероятностью 0,95).

Выдержка из текста

Задача 1

Для сигнализации об аварии установлены три независимо работающих устройства. Вероятность того, что при аварии сработает первое устройство, равна 0,9, второе – 0,95, третье – 0,85.

Найти вероятность того, что при аварии сработает: а) только одно устройство;

б) два устройства;

в) хотя бы одно устройство.

Задача 2

В каждом испытании некоторое событие происходит с вероятностью . Произведено 1600 независимых испытаний. Найти границы для частости, симметричные относительно , которые можно гарантировать с вероятностью 0,95.

Задача 3

На двух станках получают детали одинаковой номенклатуры. Случайные величины и – число бракованных деталей в партиях деталей за смену, произведённых на каждом из станков, – характеризуются следующими законами распределения:

1 2 3

0,3 0,5 0,2

0 1 2

0,6 0,3 0,1

: :

Составить закон распределения случайной величины – общего числа бракованных деталей в объединённой партии деталей, произведённых на двух станках. Найти её математическое ожидание, дисперсию и функцию распределения.

Задача 4

1. В некотором городе по схеме собственно случайной бесповторной выборки было обследовано 80 магазинов розничной торговли из 2500 с целью изучения объема розничного товарооборота. Получены следующие данные: (таблица 1)

Таблица 1

Товарооборот, у.е. Менее 60 60-70 70-80 80-90 90-100 Более100 Итого

Число магазинов 12 19 23 18 5 3 80

Найти:

а) вероятность того, что средний объем розничного товарооборота во всех магазинах города отличается от среднего объема розничного товарооборота, полученного в выборке, но не более, чем на 4 у.е. (по абсолютной величине).

б) границы, в которых с вероятностью 0,98 заключена доля магазинов с объемом розничного товарооборота от 60 до 90 у.е.;

в) объем бесповторной выборки, при которой те же границы для среднего объема розничного товарооборота (см. п. а) можно гарантировать с вероятностью 0,95).

Список использованной литературы

Похожие записи