Содержание
Задание №1.
В таблице представлены поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года (всего 16 кварталов, первая строка соответствует первому кварталу первого года).
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Y(t) 36 46 55 35 39 50 61 37 42 54 64 40 47 58 70 43
1. Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, приняв параметры сглаживания α1 = 0,3; α2 = 0,6; α3 = 0,3.
2. Оценить точность построенной модели с использованием средней относительной ошибки аппроксимации;
3. Оценить адекватность построенной модели на основе исследования:
• случайности остаточной компоненты по критерию пиков;
• независимости уровней ряда остатков по d-критерию (критические значения d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом значении r1 = 0,32;
• нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.
4. Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.
Отобразить на графике фактические, расчетные и прогнозные данные.
Задание №2.
Даны цены (открытия, максимальная, минимальная и закрытия) за 10 дней. Интервал сглаживания принять равным пяти дням. Рассчитать:
• экспоненциальную скользящую среднюю;
• момент;
• скорость изменения цен;
• индекс относительной силы;
• %R, %K и %D .
Расчеты проводить для всех дней, для которых эти расчеты можно выполнить на основании имеющихся данных .
Цены
Дни макс. мин. закр.
1 600 550 555
2 560 530 530
3 536 501 524
4 545 521 539
5 583 540 569
6 587 562 581
7 582 561 562
8 573 556 573
9 610 579 592
10 645 585 645
Задание №3.
Выполнить различные коммерческие расчеты, используя данные, приведенные в таблице 1. В условии задачи значения параметров приведены в виде переменных. По именам переменных из таблицы необходимо выбрать соответствующие численные значения параметров и выполнить расчеты.
1. Банк выдал ссуду, размером 3 000 000 руб. Дата выдачи ссуды 14.01.02, возврата – 18.03.02. День выдачи и день возврата считать за 1 день. Проценты рассчитываются по простой процентной ставке 35 % годовых. Найти:
— точные проценты с точным числом дней ссуды;
— обыкновенные проценты с точным числом дней ссуды;
— обыкновенные проценты с приближенным числом дней ссуды.
2. Через 90 дней после подписания договора должник уплатит 3 000 000 руб. Кредит выдан под 35% годовых (проценты обыкновенные). Какова первоначальная сумма и дисконт?
3. Через 9 дней предприятие должно получить по векселю 3 000 000 руб. Банк приобрел этот вексель с дисконтом. Банк учел вексель по учетной ставке 35% годовых (год равен 360 дням). Определить полученную предприятием сумму и дисконт.
4. В кредитном договоре на сумму 3 000 000 руб. и сроком 5 года, зафиксирована ставка сложных процентов, равная 35% годовых. Определить наращенную сумму.
5. Ссуда, размером 3 000 000 руб. предоставлена на 5 года. Проценты сложные, ставка – 35% годовых. Проценты начисляются 4 раза в год. Вычислить наращенную сумму.
6. Вычислить эффективную ставку процента, если банк начисляет проценты 4 раза в году, исходя из номинальной ставки 35% годовых.
7. Определить, какой должна быть номинальная ставка при начислении процентов 4 раза в году, чтобы обеспечить эффективную ставку 35% годовых.
8. Через 5 лет предприятию будет выплачена сумма 3 000 000 руб. Определить ее современную стоимость при условии, что применяется сложная процентная ставка 35% годовых.
9. Через 5 года по векселю должна быть выплачена сумма 3 000 000 руб. Банк учел вексель по сложной учетной ставке 35% годовых. Определить дисконт.
10. В течение 5 лет на расчетный счет в конце каждого года поступает по 3 000 000, на которые 4 раза в году начисляются проценты по сложной годовой ставке 35%. Определить сумму на расчетном счете к концу указанного срока.
Сумма
Дата
началь-ная
Дата ко-нечная
Время в днях
Время в годах
Ставка
Число на-числений
S
Tн
Tк
Tдн
Tлет
i
m
3000000
14.01.02
18.03.02
90
5
35
4
Выдержка из текста
Задание №1.
В таблице представлены поквартальные данные о кредитах от коммерческого банка на жилищное строительство (в условных единицах) за 4 года (всего 16 кварталов, первая строка соответствует первому кварталу первого года).
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Y(t) 36 46 55 35 39 50 61 37 42 54 64 40 47 58 70 43
1. Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, приняв параметры сглаживания α1 = 0,3; α2 = 0,6; α3 = 0,3.
2. Оценить точность построенной модели с использованием средней относительной ошибки аппроксимации;
3. Оценить адекватность построенной модели на основе исследования:
• случайности остаточной компоненты по критерию пиков;
• независимости уровней ряда остатков по d-критерию (критические значения d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом значении r1 = 0,32;
• нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.
4. Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.
Отобразить на графике фактические, расчетные и прогнозные данные.
Задание №2.
Даны цены (открытия, максимальная, минимальная и закрытия) за 10 дней. Интервал сглаживания принять равным пяти дням. Рассчитать:
• экспоненциальную скользящую среднюю;
• момент;
• скорость изменения цен;
• индекс относительной силы;
• %R, %K и %D .
Расчеты проводить для всех дней, для которых эти расчеты можно выполнить на основании имеющихся данных .
Цены
Дни макс. мин. закр.
1 600 550 555
2 560 530 530
3 536 501 524
4 545 521 539
5 583 540 569
6 587 562 581
7 582 561 562
8 573 556 573
9 610 579 592
10 645 585 645
Задание №3.
Выполнить различные коммерческие расчеты, используя данные, приведенные в таблице 1. В условии задачи значения параметров приведены в виде переменных. По именам переменных из таблицы необходимо выбрать соответствующие численные значения параметров и выполнить расчеты.
1. Банк выдал ссуду, размером 3 000 000 руб. Дата выдачи ссуды 14.01.02, возврата – 18.03.02. День выдачи и день возврата считать за 1 день. Проценты рассчитываются по простой процентной ставке 35 % годовых. Найти:
— точные проценты с точным числом дней ссуды;
— обыкновенные проценты с точным числом дней ссуды;
— обыкновенные проценты с приближенным числом дней ссуды.
2. Через 90 дней после подписания договора должник уплатит 3 000 000 руб. Кредит выдан под 35% годовых (проценты обыкновенные). Какова первоначальная сумма и дисконт?
3. Через 9 дней предприятие должно получить по векселю 3 000 000 руб. Банк приобрел этот вексель с дисконтом. Банк учел вексель по учетной ставке 35% годовых (год равен 360 дням). Определить полученную предприятием сумму и дисконт.
4. В кредитном договоре на сумму 3 000 000 руб. и сроком 5 года, зафиксирована ставка сложных процентов, равная 35% годовых. Определить наращенную сумму.
5. Ссуда, размером 3 000 000 руб. предоставлена на 5 года. Проценты сложные, ставка – 35% годовых. Проценты начисляются 4 раза в год. Вычислить наращенную сумму.
6. Вычислить эффективную ставку процента, если банк начисляет проценты 4 раза в году, исходя из номинальной ставки 35% годовых.
7. Определить, какой должна быть номинальная ставка при начислении процентов 4 раза в году, чтобы обеспечить эффективную ставку 35% годовых.
8. Через 5 лет предприятию будет выплачена сумма 3 000 000 руб. Определить ее современную стоимость при условии, что применяется сложная процентная ставка 35% годовых.
9. Через 5 года по векселю должна быть выплачена сумма 3 000 000 руб. Банк учел вексель по сложной учетной ставке 35% годовых. Определить дисконт.
10. В течение 5 лет на расчетный счет в конце каждого года поступает по 3 000 000, на которые 4 раза в году начисляются проценты по сложной годовой ставке 35%. Определить сумму на расчетном счете к концу указанного срока.
Сумма
Дата
началь-ная
Дата ко-нечная
Время в днях
Время в годах
Ставка
Число на-числений
S
Tн
Tк
Tдн
Tлет
i
m
3000000
14.01.02
18.03.02
90
5
35
4
Список использованной литературы
—