Ответы на билеты по предмету: Менеджмент (Пример)
Содержание
Задача 1.
Небольшая семейная фирма производит два широко популярных безалкогольных напитка — «Pink Fiz» и «Mint Pop». Фирма может продать всю продукцию, которая будет произведена, однако объем производства ограничен количеством основного ингредиента и производственной мощностью имеющегося оборудования. Для производства 1 л «Pink Fizz» требуется 0,02 ч работы оборудования, а для производства 1 л «Mint Pop» — 0,04 ч. Расход специального ингредиента составляет 0,01 кг и 0,04 кг на 1 л «Pink Fizz» и «Mint Pop» соответственно. Ежедневно в распоряжении фирмы имеется 24 ч времени работы оборудования и
1. кг специального ингредиента. Доход фирмы составляет 0,10 ф. ст. за 1 л «Pink Fizz» и 0,30 ф. ст. за 1 л «Mint Pop». Сколько продукции каждого вида следует производить ежедневно, если цель фирмы состоит в максимизации ежедневного дохода?
Задача 2.
Завод-производитель высокоточных элементов для автомобилей выпускает два различных типа деталей: Х и Y. Завод располагает фондом рабочего времени в 4000 чел.-ч. в неделю. Для производства одной детали типа X требуется 1 чел.-ч, а для производства одной детали типа Y — 2 чел.-ч. Производственные мощности завода позволяют выпускать максимум 2250 деталей типа Х и 1750 деталей типа Y в неделю. Каждая деталь типа Х требует 2 кг металлических стержней и 5 кг листового металла, а для производства одной детали типа Y необходимо 5 кг металлических стержней и 2 кг листового металла. Уровень запасов каждого вида металла составляет 10000 кг в неделю. Кроме того, еженедельно завод поставляет
60. деталей типа Х своему постоянному заказчику. Существует также профсоюзное соглашение, в соответствии с которым общее число производимых в течение одной недели деталей должно составлять не менее 1500 штук.
Сколько деталей каждого типа следует производить, чтобы максимизировать общий доход за неделю, если доход от производства одной детали типа Х составляет 30 ф. ст., а от производства одной детали типа Y — 40 ф. ст.?
Задача 3.
Компания производит полки для ванных комнат двух размеров — А и В. Агенты по продаже считают, что в неделю на рынке может быть реализовано до
55. полок. Для каждой полки типа А требуется 2 м 2 материала, а для полки типа В — 3 м 2 материала. Компания может получить до 1200 м 2 материала в неделю. Для изготовления одной полки типа А требуется
1. мин машинного времени, а для изготовления одной полки типа В —
3. мин; машину можно использовать 160 час в неделю. Если прибыль от продажи полок типа А составляет 3 денежных единицы, а от полок типа В — 4 ден. ед., то сколько полок каждого типа следует выпускать в неделю?
Задача 4.
Предприятие производит 3 вида продукции: А 1, А 2, А
3. используя сырьё двух типов. Известны затраты сырья каждого типа на единицу продукции, запасы сырья на планируемый период, а также прибыль от единицы продукции каждого вида.
Сырьё Затраты сырья на единицу продукции Запас сырья
А 1 А 2 А 3
I 3,5 7 4,2 1400
II 4 5 8 2000
Прибыль от ед. прод. 1 3 3
- Сколько изделий каждого вида необходимо произвести, чтобы получить максимум прибыли?
- Определить статус каждого вида сырья и его удельную ценность.
- Определить максимальный интервал изменения запасов каждого вида сырья, в пределах которого структура оптимального плана, т.е.
номенклатура выпуска, не изменится.
- Определить количество выпускаемой продукции и прибыль от выпуска при увеличении запаса одного из дефицитных видов сырья до максимально возможной (в пределах данной номенклатуры выпуска) величины.
- Определить интервалы изменения прибыли от единицы продукции каждого вида, при которых полученный оптимальный план не изменится.
Задача 5.
Колхоз имеет возможность приобрести не более 19 трехтонных автомашин и не более
1. пятитонных. Отпускная цена трехтонного грузовика — 4000 руб., пятитонного — 5000 руб. Колхоз может выделить для приобретения автомашин 141 тысяч рублей. Сколько нужно приобрести автомашин, чтобы их суммарная грузоподъемность была максимальной?
Задачу решить аналитическим методом.
Задача 6.
Менеджер по ценным бумагам намерен разместить 100000 ф. ст. капитала таким образом, чтобы получать максимальные годовые проценты с дохода. Его выбор ограничен четырьмя возможными объектами инвестиций: А, В, С и D. Объект А позволяет получать
6. годовых, объект В —
8. годовых, объект С — 10%, а объект D —
9. годовых. Для всех четырех объектов степень риска и условия размещения капитала различны. Чтобы не подвергать риску имеющийся капитал, менеджер принял решение, что не менее половины инвестиций необходимо вложить в объекты А и В. Чтобы обеспечить ликвидность, не менее
25. общей суммы капитала нужно поместить в объект D. Учитывая возможные изменения в политике правительства, предусматривается, что в объект С следует вкладывать не более
20. инвестиций, тогда как особенности налоговой политики требуют, чтобы в объект А было вложено не менее
30. капитала. Сформулируйте для изложенной проблемы распределения инвестиций модель линейного программирования
Список использованной литературы
Нет