Пример готового реферата по предмету: Высшая математика
Содержание
Глава
1. Общие понятия сферической геометрии
Сферическая геометрия – математическая дисциплина, изучающая геометрические образы, находящиеся на сфере, подобно тому как планиметрия изучает геометрические образы, находящиеся на плоскости. [1]
Всякая плоскость, пересекающая сферу, дает в сечении некоторую окружность; если секущая плоскость проходит через центр О сферы, то в сечении получается большой круг. рис 1.
Через каждые две точки А и В на сфере (рис.1), кроме случая диаметрально противоположных точек, можно провести единственный большой круг.
Выдержка из текста
Введение
По аналогии с плоскостью в пространстве Евклида имеется только два типа поверхностей, которые могут без деформации передвигаться сами по себе, так, чтобы каждая точка поверхности совмещалась с любой другой ее точкой и притом, чтобы направление любой касательной к поверхности в первой точке совместилось с направлением любой касательной во второй точке. Такими поверхностями являются плоскости и сферы.
Геометрия на сфере имеет сходства с геометрией на плоскости. Поэтому теоремы и аксиомы плоскости аналогичны теоремам и аксиомам сферы.
В 1854 г. Риман в своей диссертации «О гипотезах, лежащих в основаниях геометрии» дал глубокое и богатое по содержанию обобщение идей Гаусса и Лобачевского. Эта работа была опубликована лишь в 1868 г. после смерти Римана. В этой работе он впервые дал построение n-мерного аналитического пространства, связал вопрос о движении с вопросом о постоянстве кривизны пространства, дал образец взаимного проникновения и органического слияния геометрии и анализа. Как один из частных результатов, Риманом была получена так называемая эллиптическая геометрия, отличная от геометрий Евклида и Лобачевского, в которой через точку, лежащую вне прямой, не проходит ни одной параллельной к этой прямой и все прямые замкнуты. Развитие идей Лобачевского Риманом приблизило создание тензорного исчисления и явилось этапом, подготовившим впоследствии почву для создания теории относительности.
В астрономии же одной из важнейших задач является определение положения небесного светила на небесной сфере.
Список использованной литературы
1. Энциклопедия элементарной математики, книга IV, V. Геометрия. – М.: Наука, 1966. – 624 с.
2. Розенфельд Б.А. Неевклидовы пространства. – М.: Наука. Главная редакция физико – математической литературы, 1969. – 548 с.
3. Трайнин Я.Л. Основания геометрии. Пособие для пед. институтов. – М. 1961. – 334 с.
4. Стройк Д.Я. Краткий очерк истории математики. – М.: Наука, 1984.- 288 с.
5. Альбицкий В.А. Курс астрофизики и звездной астрономии. Том 1. – М.: Государственное издательство технико – теоретической литературы, 1951. – 591 с.
6. Атаносян Л.С. Геометрия. Часть 2. – М.: Просвещение, 1974.