Пример готового реферата по предмету: Физика
Содержание
Волны де Бройля. Помимо волновых, были также обнаружены и корпускулярные свойства. Соотношения, связывающие волновые характеристики (частота и длина волны ) с корпускулярными (энергия и импульс р ), установленные Эйнштейном (1905) для кванта света
=h=h
т. е. частицы с массой покоя, равной нулю, были обобщены французским физиком де Бройлем (1924) на частицы с отличной от нуля массой покоя. Другими словами, де Бройль предположил, что дуализм волна — частица должен быть свойствен не только свету, но и электронам и вообще любым частицам.
Соответствующая частота и волновое число по гипотезе де Бройля должны определяться соотношениями, подобными эйнштейновским, т. е. длина дебройлевской волны движущихся частиц будет равна
=2h/p , где р – импульс частиц
Теория квантов Планка, постулаты Бора, а затем и гипотеза Бройля были важнейшими этапами в процессе развития теоретических основ физики микрочастиц.
Фундаментальный шаг в этом направлении был сделан Шредингером (1926).
Он предложил описывать движение микрочастиц (например, электронов) с помощью волнового уравнения.
Уравнение Шредингера. Уравнение Шредингера, по существу представляет собой постулат нерелятивистской квантовой механики.
Выдержка из текста
С появлением уравнения Дирака принципиальные вопросы, связанные со строением электронной оболочки атома, можно было считать в основном разрешенными, хотя углубление наших знаний в развитии отдельных деталей должно было продолжаться. В связи с этим следует заметить, что в настоящее время подробно изучается влияние так называемого электромагнитного и электронно-позитронного вакуумов, а также влияние магнитных моментов ядер и размеров ядер на энергетические уровни атомов.
Одной из характерных особенностей первого этапа теории элементарных частиц, получившей название квантовой теории поля, является описание взаимной превращаемости элементарных частиц. В частности, по теории Дирака было предсказано возможное превращение гамма-квантов в пару электрон-позитрон и обратно, что затем было подтверждено экспериментально
Таким образом, если в классической теории между светом и электронами было два различия а) свет—волны, электроны— частицы, б) свет может появляться и поглощаться, число же электронов должно оставаться неизменным, то в квантовой механике со свойственным ей корпускулярно-волновым дуализмом было стерто первое различие между светом и электронами. Однако в ней, так же как и в теории Лоренца, число электронов должно было оставаться неизменным .Только после появления квантовой теории поля, описывающей взаимную превращаемость элементарных частиц, было фактически стерто и второе различие
Поскольку одной из основных задач теоретической физики является изучение реального мира и прежде всего простейших фору его движения, определяющих также и более сложные явления, то естественно, что все эти вопросы всегда связаны с филосовскими вопросами и, в частности, с вопросом познаваемости микромира, поэтому не удивительно, что многие крупные физики, сделавшие важнейшие открытия в области физики, пытались вместе с тем интерпретировать эти открытия с той или иной философской точки зрения. Благодаря таким взглядам был открыт эффект Бозе-Эйнштейновской конденсации.
К 1920 физики были уже довольно хорошо знакомы с двойственной природой света: результаты одних экспериментов со светом можно было объяснить, предполагая, что свет представляет собой волны, а в других он вел себя подобно потоку частиц. Поскольку казалось очевидным, что ничто не может быть в одно и тоже время и волной, и частицей, ситуация оставалась непонятной, вызывая горячие споры в среде специалистов. В 1923 французский физик Л.де Бройль в опубликованных им заметках высказал предположение, что столь парадоксальное поведение, может быть, не является спецификой света, но и вещество тоже может в одних случаях вести себя подобно частицам, а в других подобно волнам. Исходя из теории относительности, де Бройль показал, что если импульс частицы равен p, то «ассоциированная» с этой частицей волна должна иметь длину волны = h/p.
Это соотношение аналогично впервые полученному Планком и Эйнштейном соотношению E = h между энергией светового кванта Е и частотой соответствующей волны. Де Бройль показал также, что эту гипотезу можно легко проверить в экспериментах, аналогичных опыту, демонстрирующему волновую природу света, и настойчиво призывал к проведению таких опытов. Заметки де Бройля привлекли внимание Эйнштейна, и к 1927 К.Дэвиссон и Л.Джермер в Соединенных Штатах, а также Дж.Томсон в Англии подтвердили для электронов не только основную идею де Бройля, но и его формулу для длины волны. В 1926 работавший тогда в Цюрихе австрийский физик Э.Шрёдингер, прослышав о работе де Бройля и предварительных результатах экспериментов, подтверждавших ее, опубликовал четыре статьи, в которых представил новую теорию, явившуюся прочным математическим обоснованием этих идей.
Список использованной литературы
Управление бозе-эйнштейновским конденсатом
Группой исследователей из Германии под руководством J.Reichel разработана методика получения бозе-эйнштейновского конденсата на плоской поверхности и перемещения его вдоль поверхности с помощью электрических полей. На диэлектрическую подложку литографическим способом были нанесены два параллельных золотых проводника шириной
5. мкм. На поверхность этого устройства, называемого чипом, из обычной магнитооптической ловушки поступали атомы рубидия