Пример готового реферата по предмету: Физика
Содержание
Регулирование в источниках вторичного электропитания
Величину выпрямленного напряжения в ряде случаев нужно изменять. Такая необходимость может возникнуть при включении мощных двигателей, накала генераторных ламп, для уменьшения бросков тока при включении. При исследовании работы РЭА, приборов, например, при снятии ВАХ также требуется регулируемое напряжение.
Регулирование выпрямленного напряжения можно осуществлять на стороне переменного тока (входе), на стороне постоянного тока (выходе) и в самом выпрямителе применением регулируемых вентилей.
В качестве регуляторов напряжения на стороне переменного тока применяются:
регулируемые трансформаторы или автотрансформаторы.
регулирующие дроссели (магнитные усилители).
В регулируемом трансформаторе или автотрансформаторе первичная или вторичная обмотка выполняются с несколькими выводами. С помощью переключателя изменяется число витков обмотки и, следовательно выходное напряжение трансформатора или автотрансформатора. При коммутации обмоток часть витков может оказаться замкнутой накоротко движком переключателя, что приведет к созданию в замкнутых витках чрезмерно больших токов и к выходу трансформатора из строя. Поэтому такую коммутацию рекомендуется производить после отключения трансформатора из сети. Это является большим недостатком. В ЛАТРах угольная щетка выполняется в виде ролика так, чтобы она могла перекрывать не более двух проводников, то есть чтобы не более одного витка замыкалось щеткой накоротко.
Регулирующий дроссель (или магнитный усилитель) включается на входе выпрямителя. Если обмотки переменного тока магнитного усилителя включить последовательно с нагрузкой и изменить ток в обмотке управления, то будет изменяться индуктивное сопротивление обмоток дросселя и падение напряжения на этих обмотках. Следовательно, будет изменяться
Выдержка из текста
Именно поэтому автоматические системы компенсации реактивной мощности (расстроенные / стандартные) устанавливаются на мощную нагрузку, например, на заводах. Такие системы состоят из нескольких конденсаторных блоков, которые могут быть подключены и отключены по мере надобности, и управляются контролером ККМ на основании данных трансформатора тока.
Низкий коэффициент мощности (cosφ)
Низкий cosφ приводит к
• повышению затрат и потребления энергии,
• уменьшению мощности, передающейся по сети,
• потерям мощности в сети
• повышению потерь трансформатора
• повышенному падению напряжения в распределенных сетях питания
Увеличение коэффициента мощности
Увеличение коэффициента мощности может быть достигнуто путем
• компенсации реактивной мощности конденсаторами
• активной компенсации – использование полупроводников
• перевозбуждением синхронных машин (двигатель / генератор)
Типы ККМ (расстроенный или стандартный)
• индивидуальная или фиксированная компенсация (каждый источник реактивной мощности компенсируется индивидуально)
• групповая компенсация (источники реактивной мощности объединены в группу и компенсируются как одно целое)
• центральная или автоматическая компенсация (централизованной системой ККМ)
• смешанная компенсация
В системе электроснабжения потери в сетях составляют 8–
12. от объема производства. Для уменьшения этих потерь необходимо: правильно определять электрические нагрузки; рационально передавать и распределять электрическую энергию; обеспечивать необходимую степень надежности; обеспечивать необходимое качество электроэнергии; обеспечивать электромагнитную совместимость приемника с сетью; экономить электроэнергию. Мероприятия, могущие обеспечить вышеперечисленные задачи это – создание быстродействующих средств компенсации реактивной мощности, улучшающей качество; сокращение потерь достигается компенсацией реактивной мощности, увеличением загрузки трансформаторов, уменьшением потерь в них, приближением трансформаторов к нагрузкам, использование экономичного оборудования и оптимизация его режимов работы, а также использование автоматических систем управления электроснабжение
Список использованной литературы
Тиристорные устройства: Управляемые выпрямители, преобразователи переменного напряжения в переменное одной частоты. Схемы, принцип работы, область применения, достоинства и недостатки